

ONE STAGE GAS BURNERS ► RIELLO 40 FS SERIES ► FS3

CE

2	▶ FS3	11 ÷	35	kVV
	► FS5	23 ÷	58	kW
	▶ FS8	46 ÷	93	kW
	▶ FS10	52 ÷	116	kW
	▶ FS20	81 ÷	218	kW

The Riello 40 FS series of one stage gas burners, is a complete range of products developed to respond to any request for light industrial application. The Riello 40 FS series is available in five different models, whit an output ranging from 11 to 218 kW, divided in four different structures.

All the models use the same components designed by Riello for the Riello 40 FS series. The high quality level guarantees safe working.

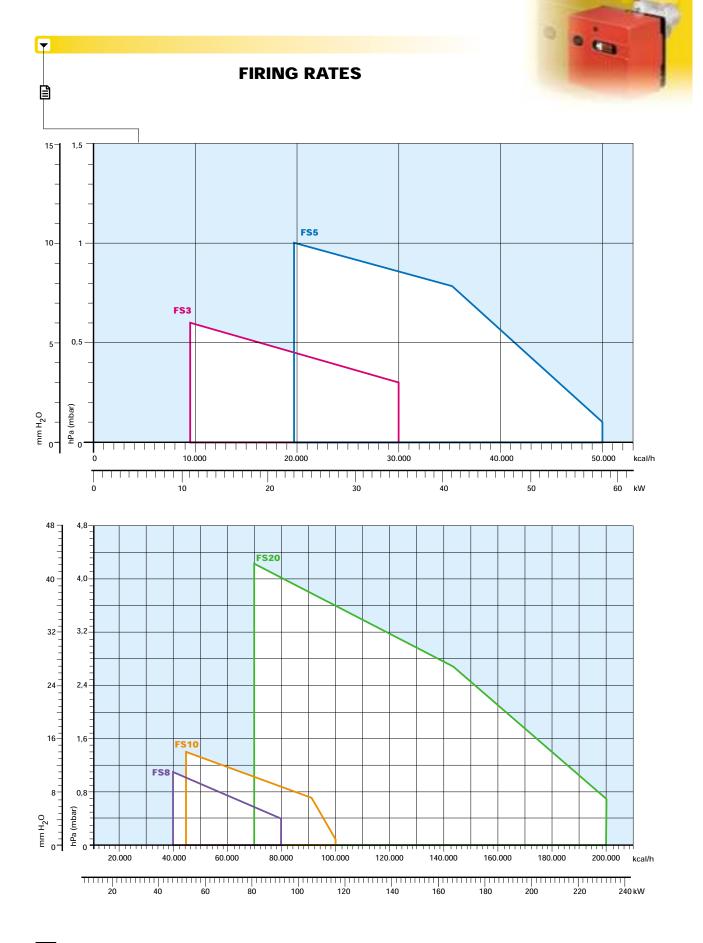
In developing these burners, special attention was paid to reducing noise, to the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

All the models are approved by the EN 676 European Standard and conform to European Directives for EMC, Low Voltage, Machinery and Boiler Efficiency. All the Riello 40 FS burners are tested before leaving the factory.

b

TECHNICAL DATA

	Model			▼ FS3	▼ FS5	▼ FS8	▼ FS10	▼ FS20
						-		
	Setting					One stage		
		type						
		run time						
	Heat		kW	11 - 35	23 - 58	46 - 93	52 - 116	81 - 218
	output		Mcal/h	9,5 - 30	20 - 50	40 - 80	45 - 100	69,7 - 187,5
	•	temperature	°C min./max.			0/40		
		c value G20 gas				10		
	G20 gas o	-	kg/Nm ³			0,71		
	G20 gas o	-	Nm ³ /h	1,1 - 3,5	2,3 - 5,8	4,6 - 9,3	5,2 - 11,6	8,1 - 21,8
ta		c value G25 gas				8,6		
Fuel / air data	G25 gas o	density	kg/Nm ³			0,78		
air	G25 gas o	-	Nm³/h	1,3 - 4	2,7 - 6,7	5,3 - 10,8	6 - 13,4	9,5 - 25,3
el /		c value LPG gas				25,8		
Fu	LPG gas o	density	kg/Nm ³			2,02		
	LPG gas o	output	Nm³/h	0,4 - 1,4	0,9 - 2,2	1,8 - 3,6	2 - 4,4	3,1 - 8,4
	Fan		type			forward tilted blades		
	Air tempe	erature	max. °C			40		
	Electrical	supply	Ph/Hz/V			$1/50/230 \pm 10\%$		
	Aux. elect	rical supply	Ph/Hz/V					
	Control b	ох	type	525 SE/5F	525 SE/3F	525 SE/3F	508 SE	508 SE
ta	Total elec	trical power	kW	0,1	0,11	0,13	0,13	0,25
da	Protectio	n level	IP			40		
Electrical data	Motor ele	ctrical power	kW	0,09	0,09	0,09	0,09	0,15
ctr	Rated mo	otor current	Α	0,6	0,65	0,7	0,7	1,4
Ele	Motor sta	art current	Α	4	4	4	4	7,5
	Motor pro	otection level	IP			20		
	Ignition t	ransformer		inco	prporated in the control	box	separated from	the control box
	Operation	n			intermitte	ent (at least one halt ev	very 24 h)	
suc	Sound pr	essure	dB(A)	56	60	66	67	73
issi	CO Emiss	sions	mg/kWh			< 40		
Approval Emissions	NOx Emis	ssions	mg/kWh			≤ 120		
val	Directives	S			90/396/EEC, 89/33	6/EEC, 73/23/EEC, 98/3	37/EEC, 92/42/EEC	
pro	Conformi	ing to				EN 676		
Apl	Certificat	ions				CE - 0063 AP6680		


Reference conditions:

E

Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

Noise was measured in the boiler room behind the burner at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful working field for choosing the burner

Test conditions conforming to EN 676: Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

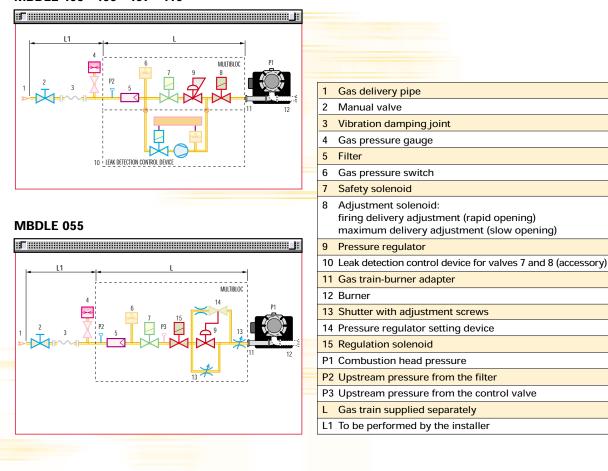
GAS TRAINS

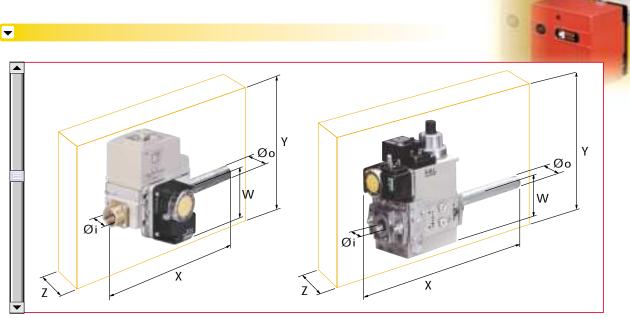
The burners are set for fuel supply from either the right or left hand sides.

Depending on the gas output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

The gas train is Multibloc type, containing the main components in a single unit.

Except for the MBDLE 055 model, a valve seal control (as accessory) can be fitted to the Multibloc gas trains.

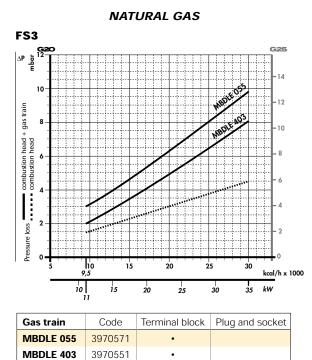

The MBDLE 055 Multibloc gas train can be fitted only to the left of the burner.

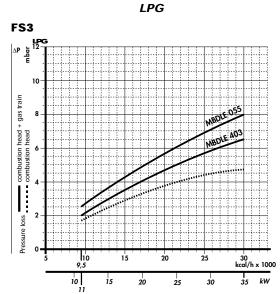


Y

B

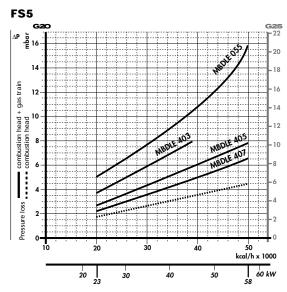
MBDLE 403 - 405 - 407 - 410

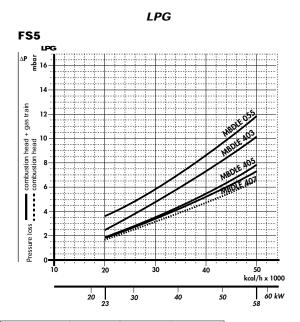

The dimensions of the gas trains vary depending on their construction features. The following table shows the dimensions of the gas trains that can be fitted to Riello 40 FS burners, intake diameter and the coupling flange to the burner.

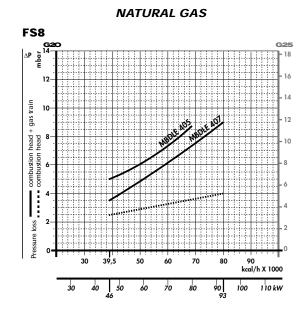

	Name	Code	Øi	Øo	X mm	Y mm	W mm	Z mm
	MBDLE 055	3970571	1/2"	1/2"	307	155	31	122
	MBDLE 055	3970569	1/2"	1/2"	307	155	31	122
с	MBDLE 403	3970551	1/2"	1/2"	275	136	26	100
ŏ	MBDLE 403	3970533	1/2"	1/2"	275	136	26	100
BL	MBDLE 405	3970552	1/2"	1/2" (*)	321	186	46	120
5	MBDLE 405	3970530	1/2"	1/2"	321	186	46	120
N	MBDLE 405	3970500	3/4"	3/4"	371	186	46	120
2	MBDLE 407	3970531	3/4"	3/4"	371	186	46	120
	MBDLE 407	3970553	3/4"	3/4"	371	186	46	120
	MBDLE 410	3970532	1"	3/4"	405	221	55	145

(*) With 1/2" - 3/4" reduction nipple supplied.

PRESSURE DROP DIAGRAMS


The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the values thus calculated represents the minimum required input pressure to the gas train.



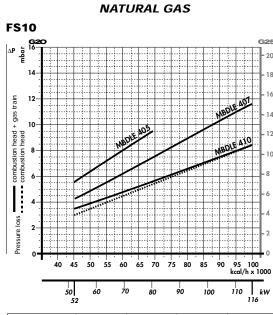


-

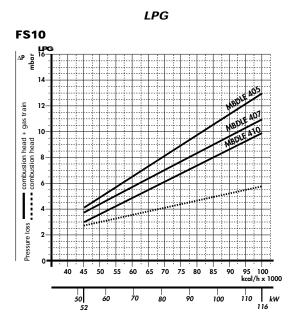
Gas train	Code	Output kW	Terminal block	Plug and socket
MBDLE 055	3970569	-		•
MBDLE 055	3970571	-	•	
MBDLE 403	3970533	≤ 45 (*)		•
MBDLE 403	3970551	≤ 45 (*)	•	

Gas train	Code	Terminal block	Plug and socket
MBDLE 405	3970530		•
MBDLE 405	3970552	•	
MBDLE 407	3970531		•

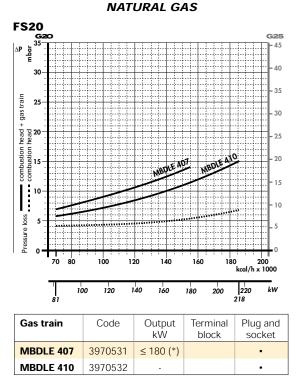
(*) With natural gas.


Gas train	Code	Output kW	Terminal block	Plug and socket
MBDLE 405	3970530	≤ 80 (*)		•
MBDLE 405	3970552	≤ 80 (*)	•	

LPG



(*) With natural gas.



Gas train	Code	Output kW	Terminal block	Plug and socket
MBDLE 405	3970500	≤ 80 (*)		•
MBDLE 407	3970531	-		•
MBDLE 410	3970532	-		•

(*) With natural gas.

-

LPG FS20 1PC 35mbar gas train combustion head -combustion head Pressure loss 180 200 kcal/h x 1000 218 kW

(*) With natural gas.

• note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

DIMENSIONING OF THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

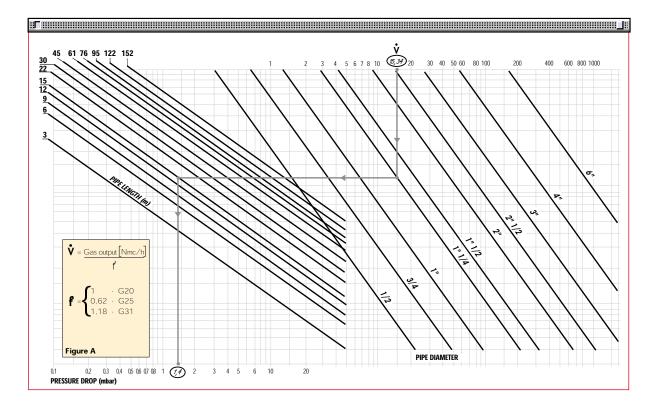
The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion

coefficient.

Once the equivalent output has been determined on the delivery scale (\dot{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).


By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

Air suction

Y

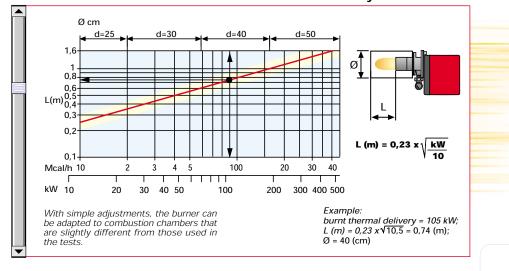
B

Y

B

COMBUSTION HEAD

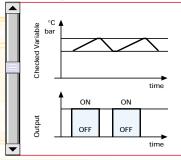
The combustion head in Riello 40 FS burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.



Combustion head

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

Combustion chamber dimensions used in the test laboratory

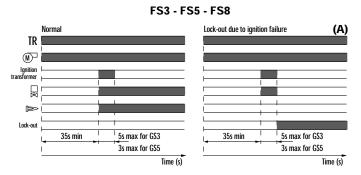


ADJUSTMENT

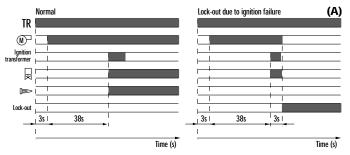
BURNER OPERATION MODE

All these models are one stage operation.

"One stage" operation



Y


B

Air adjustment

IGNITION

(A) Lock-out is shown by a led on the appliance.

Correct operation for FS3, FS5 and FS8 models

0sThe burner begins the ignition cycle0s-35sPre-purge with the air damper open35sIgnition

Lock-out due to ignition failure

If the flame does not light within the safety limit (3s for FS3 model and 5s for FS5 and FS8 models) the burner locks-out.

Correct operation for FS10 and FS20 models

- 0s The burner begins the ignition cycle
- 0s-3s Safety time
- 3s-38s Pre-purge with the air damper open

41s Ignition

Lock-out due to ignition failure

If the flame does not light within the safety limit (3s) the burner locks-out.

ELECTRICAL CONNECTIONS to be made by the installer

Electrical connections must be made by qualified and skilled personnel in conformity with the local regulations in force.

Control box fitted with an ignition transformer in FS3, FS5 and FS8 models

FS3 is fitted with terminal block: FS 10 and FS 20 are fitted with 7 and 6 pole sockets, FS5 and FS8 are available in both the configurations.

 $|\otimes$

J SB

TS-Ŷ

F

PELN

230V ~ 50Hz

֯

Terminal block 1 2 3 4 5 6 7 8 9 10

TR

FS3 - FS5 - FS8

- SD Lock out red

 TR Regulating thermostat

 TS Safety thermostat (manual reset)

 VS Security valve

 V1 One stage valve

 P Gas pressure switch

 F Fuse

Y

B

FS5 - FS8 - FS10 - FS20

Burner electrical wiring

Gas train electrical wiring

Ø÷

1 2 3 ±

vs X V1 X

+

Black

Grey

123÷

P

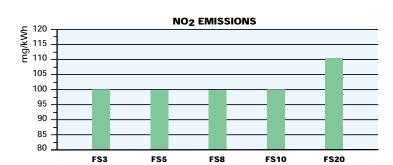
GAS

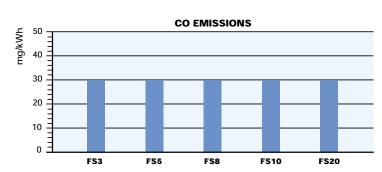
6-pole socket $3 2 1 N \div Ph$ 6-pin plug Black Grey 123÷ 1 2 3 + --• Ρ with King

- h1 Single stage hour meter
 SB Lock out led
 TR Regulating thermostat
 TS Safety thermostat (manual reset)
 VS Security valve
 V1 One stage valve
 P Gas pressure switch
 E Europe
- P F
- Fuse

The following table shows the supply lead sections and types of fuse to be used.

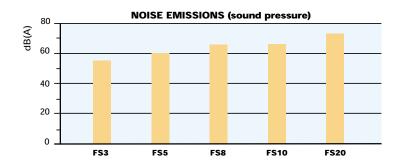
Model	▼ FS3	▼ FS5	▼ FS8	▼ FS10	▼ FS20
	230V	230V	230V	230V	230V
FΑ	6	6	6	6	6A
L mm ²	1	1	1	1	1


F = Fuse L = Lead section


' Gas

EMISSIONS

The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.

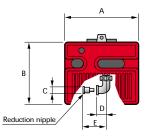


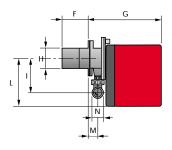
Y

₿

Special attention has been paid to noise reduction in the FS3 model. The model is fitted with sound-proofing material inside the cover.

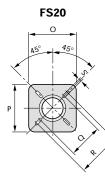
OVERALL DIMENSIONS (mm)

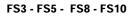


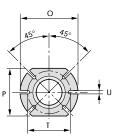

These models are distinguished by their reduced size, in relation to the outputs achieved, which means they can be fitted to any boiler actually on the market.

BURNERS

Y

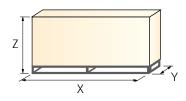

Ê





Model	Α	В	C	D	E	F	G	Н	I	L	М	N
FS3	252	215	Rp 1/2	25	55	100	230	91	132	165	37	Rp 3/8
► FS5	272	233	Rp 1/2	28	-	100	295	91	138	180	48	-
► FS8	305	262	Rp 3/4	33	-	110	347	105	142	204	61	-
▶ FS10	305	262	Rp 3/4	33	-	110	347	105	142	204	61	-
► FS20	350	298	Rp 3/4	33	-	120	389	125	152	230	67	-

BURNER-BOILER MOUNTING FLANGE



Model	0	Р	Q	R	S	Т	U
▶ FS3	170	140	-	-	-	130	10
► FS5	170	140	-	-	-	130	10
▶ FS8	185	160	-	-	-	130	11
▶ FS10	185	160	-	-	-	130	11
▶ FS20	170	170	155	200	11	-	-

PACKAGING

Model	Х	Y	Z	kg
►FS3	365	325	300	9
►FS5	435	345	315	10
▶ FS8	473	413	320	16
▶ FS10	473	413	320	16
▶ FS20	525	453	365	16

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

The burner is set in factory on standard calibration (minimum output), if necessary adjustments can be made on the basis of the maximum output of the boiler.

All operations must be performed as described in the technical handbook supplied with the burner.

BURNER SETTINGS

The air damper position can be easily adjusted removing the burner cover.

Head setting is easy and aided by a graduated scale, a test point allows reading the air pressure in the combustion head.

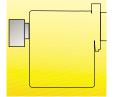
Riello 40 FS burners are fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

Y

B

MAINTENANCE

Maintenance is easily solved because the combustion head can be disassemblied without having to remove the burner from the boiler.

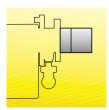


BURNER ACCESSORIES

Remote control release kit for the 525-508 control box

The 525-508 control box can be remotely released using an electric command kit.

This kit must be installed in conformity with current regulations in force.


Y

Ē

Remote control release kit for the 525-508 control box			
Burner	Kit code		
FS3 - FS5 - FS8 - FS10 - FS20	3001030		

Extended head kit

"Standard head" burners can be transformed into "extended head" versions by using the special kit. Below the KITS available for the various burners are listed, showing the original and the extended lengths.

Combustion head extension kit					
Burner Standard Extended Kit code head length head length (mm) (mm)					
FS3 - FS5	100	125	3000820		
FS8 - FS10	110	170	3000864		
FS20	120	280	3000873		

End cone with turbulator disk

End cone with turbulator disk					
Burner	Projection	Kit code			
FS5	+15	3000916			
FS8	+18	3000917			
FS10	+18	3000918			
FS20	+23	3000919			

LPG kit


For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table:

L	PG kit
Burner	Kit code
FS3	3000881
FS5	3000882
FS8	3000927
FS10	3000884
FS20	3000886

Town gas kit

Town gas kit				
Burner	Kit code			
FS3	3000888			
FS5	3000889			
FS8	3000890			
FS10	3000891			
FS20	3000893			

Seal control kit

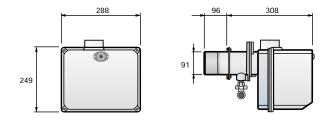
To test the valve seals on the gas train, (except for the model with Multibloc MBDLE 055) a special "seal control kit" is available.

Seal control kit			
Burner	Kit code		
FS3 - FS5 - FS8 - FS10 - FS20	3010123		

BALANCED FLUE VERSION

The R40 series balanced flue gas burner has been specifically designed to meet the increasing trend towards the use of balanced flue, otherwise known as room sealed appliances, which avoid the necessity of having a chimney to discharge the products of combustion.

Balanced flue products are completely sealed from the environment in which they are installed, drawing air for combustion directly from the outside, thereby ensuring no unwelcome smells from the combustion.

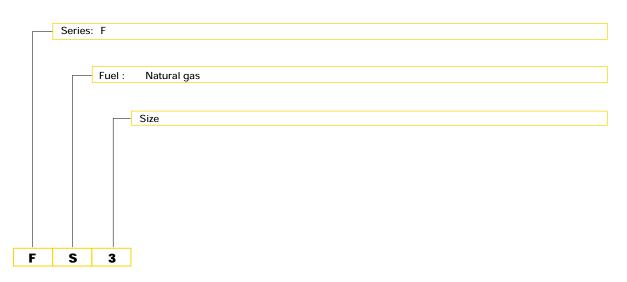

As a result of the burner components being completely enclosed this provides an additional benefit of low sound levels.

This version is available for FS3 and FS5 only.

Riello 40 FS Balanced Flue version

Overall dimensions (mm)

▼


SPECIFICATION

A special index guides your choice of boiler from the various models available in the FS series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

-

È

AVAI	ABLE BURN	ER MODELS	
FS3 FS5 FS8 FS10 FS20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	kW kW kW kW kW	

SPECIFICATION DESCRIPTION

Burner

Monoblock, gas burners, completely automatic, with one stage settings fitted with: - Fan with forward inclined blades

- Cover lined with sound-deadening material
- Metallic and fixed air damper with adjustment
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Single stage working valve with ignition gas output regulator.

Burner and gas train assembled

Approval:

- EN 676 standard.

Conforming to:

- 90/396/EEC (gas)
- 73/23/EEC (low voltage)
- 89/336/EEC (electromagnetic compatibility)
- 92/42/EEC (performance)
- 98/37/EEC (machines).

Standard equipment:

- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- 7-pole socket
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue
- Hinge
- Grommet.

Available accessories to be ordered separately:

- Remote release kit
- Extended head kit
- LPG kit
- Town gas kit
- Seal control kit
- Alternative combustion head kit
- Balanced flue version.

▼

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

ONE STAGE GAS BURNERS ► RIELLO 40 GS SERIES

CE

GS3	11 ÷	35	kW
GS5	18 ÷	58	kW
▶ GS10	42 ÷	116	kW
▶ GS20	81 ÷	232	kW

The Riello 40 GS series of one stage gas burners, is a complete range of products developed to respond to any request for home heating. The Riello 40 GS series is available in four different models, whit an output ranging from 11 to 232 kW, divided in four different structures.

All the models use the same components designed by Riello for the Riello 40 GS series. The high quality level guarantees safe working. In developing these burners, special attention was paid to reducing noise, to the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

All the models are approved by the EN 676 European Standard and conform to European Directives for EMC, Low Voltage, Machinery and Boiler Efficiency. All the Riello 40 GS burners are tested before leaving the factory.

▶ TS0025UK00

b

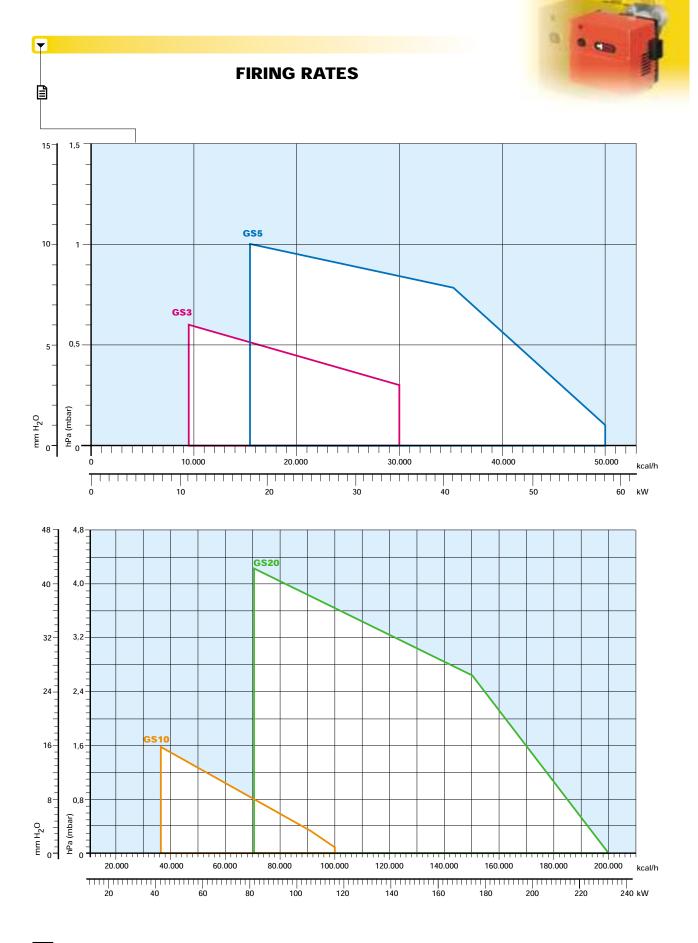
Ξ

Ê

TECHNICAL DATA

Ν	Model		▼ GS3	▼ GS5	▼ GS10	▼ GS20		
S	Setting			One	stage			
	ervo- type							
n	notor run time			6 ÷ 28				
ŀ	leat	kW	11 - 35	18 - 58	42 - 116	81 - 232		
C	output	Mcal/h	9,5 - 30	15,5 - 50	36 - 100	70 - 200		
۷	Norking temperature	°C min./max.		0/	40			
N	let calorific value G20 gas	kWh/Nm ³		1	0			
C	G20 gas density	kg/Nm³		0,	71			
C	G20 gas output	Nm³/h	1,1 - 3,5	1,8 - 5,8	4,2 - 11,6	8,1 - 23,2		
, N	let calorific value G25 gas	kWh/Nm ³		8,	,6			
C	G25 gas density	kg/Nm³		0,	78			
	G25 gas output	Nm³/h	1,3 - 4	2,1 - 6,7	4,9 - 13,4	9,4 - 26,9		
	let calorific value LPG gas	kWh/Nm ³		25	5,8			
L	PG gas density	kg/Nm³		2,	02			
L	PG gas output	Nm³/h	0,4 - 1,4	0,7 - 2,2	1,6 - 4,4	3,1 - 8,9		
F	an	type		forward til	Ited blades			
F	Air temperature	max. °C	40					
E	lectrical supply	Ph/Hz/V	1/50/230 ±10%					
F	Aux. electrical supply	Ph/Hz/V	-					
C	Control box	type	525 SE/5	525 SE/3	508 SE	508 SE		
; T	otal electrical power	kW	0,1	0,11	0,13	0,25		
	Protection level	IP		40				
F	Notor electrical power	kW	0,09	0,09	0,09	0,15		
F	Rated motor current	Α	0,6	0,65	0,7	1,4		
íN	Notor start current	Α	4	4	4	7,5		
Ν	Notor protection level	IP		2	0			
ļ	gnition transformer		incorporated in	the control box	separated from	the control box		
C	Operation			intermittent (at least	t one halt every 24 h)			
5	Sound pressure	dB(A)	55	58	65	72		
S C N	O Emissions	mg/kWh		< -	40			
P	NOx Emissions	mg/kWh		≤ 1	120			
	Directives		9	0/396/EEC, 89/336/EEC, 73/2	23/EEC, 98/37/EEC, 92/42/EE	C		
	Conforming to		EN 676					
ł	Certifications		CE - 0063 AP6680					

Reference conditions:


Y

Ē

Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

Noise was measured in the boiler room behind the burner at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful working field for choosing the burner

Test conditions conforming to EN 676: Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

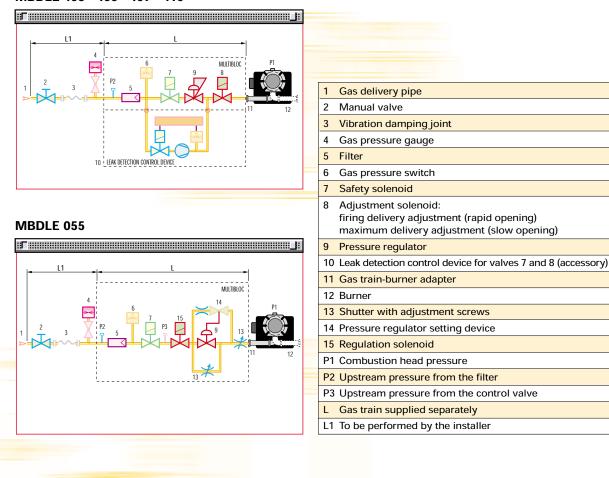
The burners are set for gas supply from either the right or left hand sides.

Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

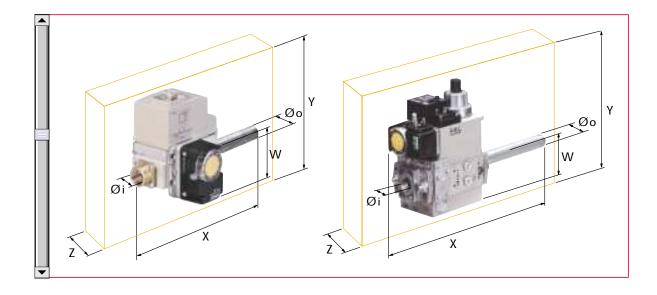
The gas train is Multibloc type, containing the main components in a single unit.

Except for the MBDLE 055 model, a valve seal control (as accessory) can be fitted to the Multibloc gas trains.

The MBDLE 055 Multibloc gas train can be fitted only to the left of the burner.



FUEL SUPPLY


Y

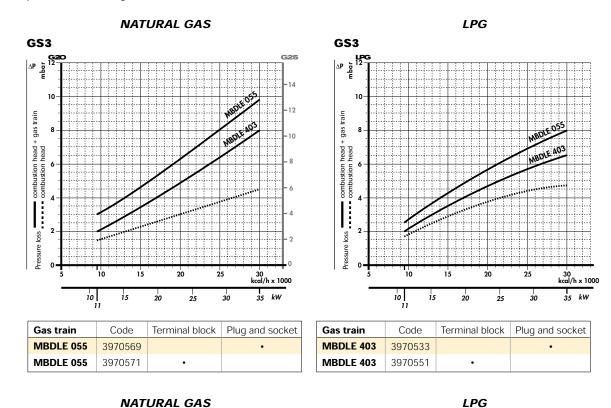
B

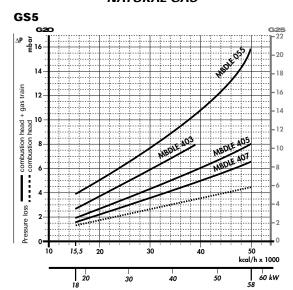
MBDLE 403 - 405 - 407 - 410

The dimensions of the gas trains vary depending on their construction features. The following table shows the dimensions of the gas trains that can be fitted to Riello 40 GS burners, intake diameter and the coupling flange to the burner.

	Name	Code	Øi	Øo	X mm	Y mm	W mm	Z mm
	MBDLE 055	3970569	1/2"	1/2"	307	155	31	122
	MBDLE 055	3970571	1/2"	1/2"	307	155	31	122
SO	MBDLE 403	3970533	1/2"	1/2"	275	136	26	100
Ľ	MBDLE 403	3970551	1/2"	1/2"	275	136	26	100
TIBL	MBDLE 405	3970530	1/2"	1/2" (*)	321	186	46	120
5	MBDLE 405	3970500	3/4"	3/4"	371	186	46	120
Σ	MBDLE 407	3970531	3/4"	3/4"	371	186	46	120
	MBDLE 410	3970532	1"	3/4"	405	221	55	145
	MBDLE 410	3970554	1"	3/4"	405	221	55	145

(*) With 1/2" - 3/4" reduction nipple supplied.


-



PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the values thus calculated represents the minimum required input pressure to the gas train.

Gas train	Code	Code Output Terr kW bl		Plug and socket
MBDLE 055	3970569	-		•
MBDLE 055	3970571	-	•	
MBDLE 403	3970533	≤ 45 (*)		•
MBDLE 403	3970551	≤ 45 (*)	•	

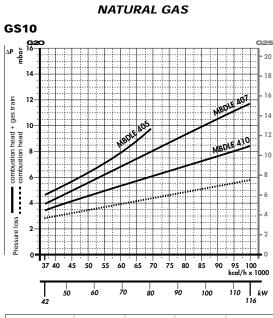
GS5 LP △P ┏ 16 14 combustion head + gas train combustion head 12 10 8 é Ĭ 4 Pressure loss 2 0 15,5 20 30 40 50 kcal/h x 1000

60 kW

▼

Gas train	Code	Terminal block	Plug and socket
MBDLE 405	3970530		•
MBDLE 405	3970552	•	
MBDLE 407	3970531		•

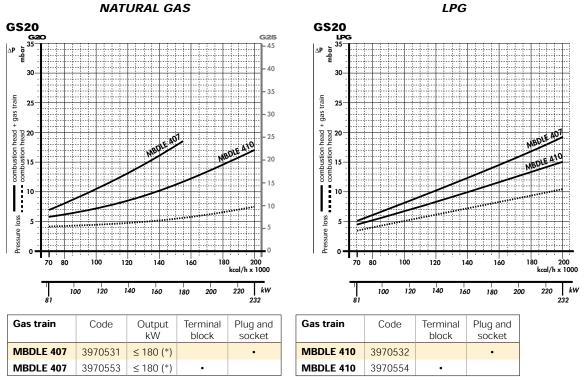
30


40

50

20 18

(*) With natural gas.



							LF	G										
S10																		
LPC	3																	
P a 16-					+						···			·+··	<u></u>			
-					.									1	ļ			
14-															İ		£ .	
					+	++					··•	÷		MB	15	Δ.		
⊑ 12–												1		18	2		61	-
compusion nead + gas rain combustion head - 01													1	AB N	10	2	1	ij
ະ ກິ + 10–					+										/			
- <u>5</u>										/	/		4	NBI	١E	4	9	
hea hea									1		/		1	B	~			
combustion head combustion head				1		1.1			/				-					_
snc .					+	1				1				•				
5 6 –								7			1				1			_
				/	\checkmark								::t:	1	İ.			
4-						7	·				··+··			·+··				
4-																		
		~							1.			i	Ŀ.	1	İ.			
Pressure loss			+	+	H	+	+	+	+		+	:	+	+	+		+	-
ssur																		
					<u>†</u> -	·····			· · · · ·			·	···	••••	<u> </u>	••••		
J -	37 4	04	5 5	0	55	60	65	70	7	5	80	85		90	ç k	95 cal/	10 ′h x	0
	Т	50		60		70		80		9	,	1	00		1	10	Τ	,

Gas train	Code	Output kW	Terminal block	Plug and socket			
MBDLE 405	3970500	≤ 80 (*)		•			
MBDLE 407	3970531			•			
MBDLE 410	3970532	-		•			
*) With natural das							

(*) With natural gas.

-

^(*) With natural gas.

▶ note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

DIMENSIONING OF THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

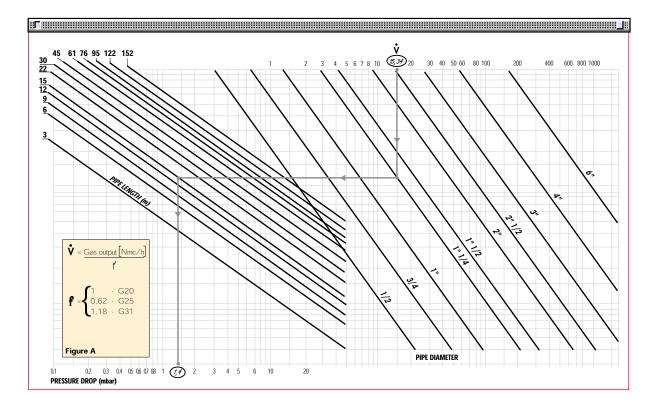
The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion

coefficient.

Once the equivalent output has been determined on the delivery scale (\dot{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).


By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

▼

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

Y

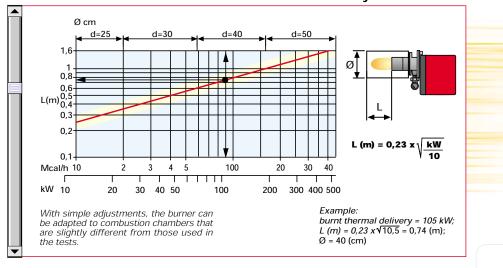
B

Y

B

Air pressure switch

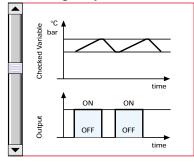
COMBUSTION HEAD


The combustion head in Riello 40 GS burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

Flange

Combustion chamber dimensions used in the test laboratory

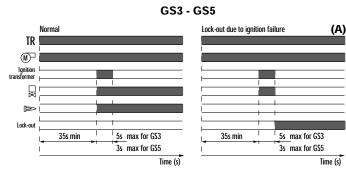


ADJUSTMENT

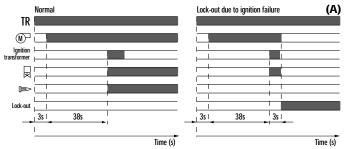
BURNER OPERATION MODE

All these models are one stage operation.

"One stage" operation



Y


B

Air damper completely open

IGNITION

GS10 - GS20

(A) Lock-out is shown by a led on the appliance.

Correct operation for GS3 and GS5 models

0sThe burner begins the ignition cycle0s-35sPre-purge with the air damper open35sIgnition

Lock-out due to ignition failure

If the flame does not light within the safety limit (3s for GS3 model and 5s for GS5 model) the burner locks-out.

Correct operation for GS10 and GS20 models

- 0s The burner begins the ignition cycle
- 0s-3s Safety time
- 3s-38s Pre-purge with the air damper open

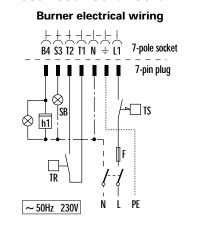
41s Ignition

Lock-out due to ignition failure

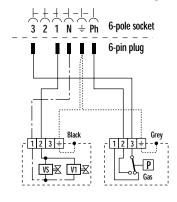
If the flame does not light within the safety limit (3s) the burner locks-out.

ELECTRICAL CONNECTIONS to be made by the installer

Electrical connections must be made by qualified and skilled personnel in conformity with the local regulations in force. All the models are fitted with 7 and 6 pole sockets.


Y

₿



Control box fitted with an ignition transformer in GS3 and GS5 models

" ONE STAGE" OPERATION ►

Gas train electrical wiring

GS3 - GS5 - GS20

h1 - Single stage hour meter

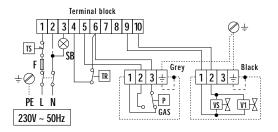
The stage hour meter
 SB - Lock out led
 TR - Regulating thermostat
 TS - Safety thermostat (manual reset)
 VS - Security valve
 V1 - One stage valve
 P - Gas pressure switch

- SB Lock out led

 TR Regulating thermostat

 TS Safety thermostat (manual reset)

 VS Security valve


 V1 One stage valve

 D Goe stage valve

- P
- Gas pressure switch Fuse Ē

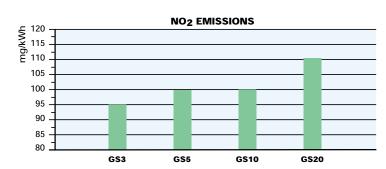
PF

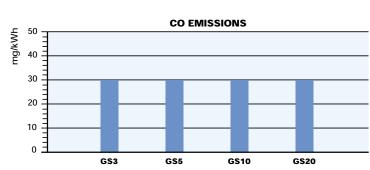
- Fuse

The following table shows the supply lead sections and types of fuse to be used.

Model	▼ GS3	▼ GS5	▼ GS10	▼ GS20
	230V	230V	230V	230V
FΑ	6	6	6	6A
L mm ²	1	1	1	1

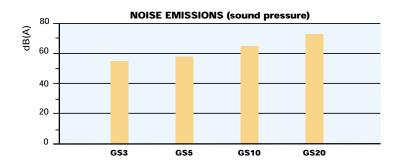
F = FuseL = Lead section




GS3 - GS5 - GS10 - GS20

EMISSIONS

The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.

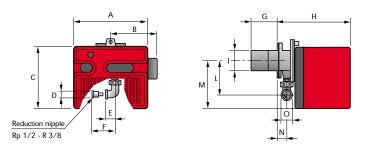


Y

₿

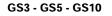
Special attention has been paid to noise reduction. All models are fitted with sound-proofing material inside the cover.

OVERALL DIMENSIONS (mm)

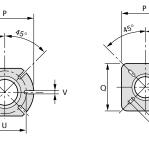


These models are distinguished by their reduced size, in relation to the outputs achieved, which means they can be fitted to any boiler actually on the market.

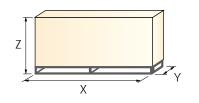
BURNERS


Y

Ê


Model	А	В	С	D	Е	F	G	Н	I	L	Μ	Ν	0
► GS3	252	166	215	Rp 1/2	25	55	100	230	91	132	165	37	Rp 3/8
GS5	272	170	233	Rp 1/2	28	-	100	295	91	138	180	48	-
▶ GS10	305	188	262	Rp 3/4	33	-	110	347	105	142	204	61	-
▶ GS20	350	212	298	Rp 3/4	33	-	120	389	125	152	230	67	-

BURNER-BOILER MOUNTING FLANGE


۵5°

Model	Р	Q	R	S	Т	U	V
GS3	170	140	-	-	-	130	10
GS5	170	140	-	-	-	130	10
► GS10	185	160	-	-	-	130	11
► GS20	170	170	11	155	200	-	-

PACKAGING

Model	Х	Y	Z	kg
► GS3	365	325	300	11
GS5	435	345	315	11
▶ GS10	473	413	320	26
▶ GS20	525	453	365	21

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

The burner is set in factory on standard calibration (minimum output), if necessary adjustments can be made on the basis of the maximum output of the boiler.

All operations must be performed as described in the technical handbook supplied with the burner.

BURNER SETTINGS

The air damper position can be easily adjusted removing the burner cover.

 Head setting is easy and aided by a graduated scale, a test point allows reading the air pressure in the combustion head.

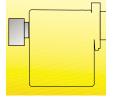
Riello 40 GS burners are fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

Ŧ

B

MAINTENANCE

Maintenance is easily solved because the combustion head can be disassemblied without having to remove the burner from the boiler.

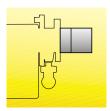


BURNER ACCESSORIES

Remote control release kit for the 525-508 control box

The 525-508 control box can be remotely released using an electric command kit.

This kit must be installed in conformity with current regulations in force.


Y

Ē

Remote control release kit for the 525-508 control box				
Burner	Kit code			
GS3 - GS5 - GS10 - GS20	3001030			

Extended head kit

"Standard head" burners can be transformed into "extended head" versions by using the special kit. Below the KITS available for the various burners are listed, showing the original and the extended lengths.

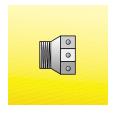
Combustion head extension kit								
Burner	Standard head length (mm)	Extended head length (mm)	Kit code					
GS3 - GS5	100	125	3000820					
GS10	110	170	3000864					
GS20	120	280	3000873					

End cone with turbulator disk

	End cone with turbulator disk	í.
Burner	Projection	Kit code
GS5	+15	3000916
GS10	+18	3000918
GS20	+23	3000919

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table:



LPG k	it
Burner	Kit code
GS3	3000881
GS5	3000882
GS10	3000884
GS20	3000886

Town gas kit

	Town gas kit
Burner	Kit code
GS3	3000888
GS5	3000889
GS10	3000891
GS20	3000893

Seal control kit

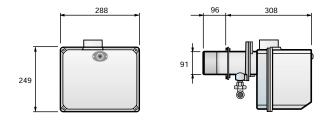
To test the valve seals on the gas train, (except for the model with Multibloc MBDLE 055) a special "seal control kit" is available.

	Seal control kit
Burner	Kit code
GS3 - GS5 - GS10 - GS20	3010123

BALANCED FLUE VERSION

The R40 series balanced flue gas burner has been specifically designed to meet the increasing trend towards the use of balanced flue, otherwise known as room sealed appliances, which avoid the necessity of having a chimney to discharge the products of combustion.

Balanced flue products are completely sealed from the environment in which they are installed, drawing air for combustion directly from the outside, thereby ensuring no unwelcome smells from the combustion.

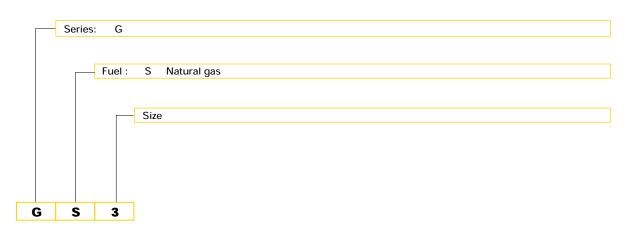

As a result of the burner components being completely enclosed this provides an additional benefit of low sound levels.

This version is available for GS3 and GS5 only.

Riello 40 GS Balanced Flue version

Overall dimensions (mm)

▼


SPECIFICATION

A special index guides your choice of boiler from the various models available in the GS series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

 \mathbf{T}

È

AVAILABLE BURNER MODELS							
GS3	11 ÷	35	kW				
GS5	18 ÷	58	kW				
GS10	42 ÷	116	kW				
GS20	81 ÷	232	kW				

SPECIFICATION DESCRIPTION

Burner

Monoblock, gas burners, completely automatic, with one stage settings fitted with:

- Fan with forward inclined blades
- Cover lined with sound-deadening material
- Air damper, completely closed in stand by, with adjustment inside the cover
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Single stage working valve with ignition gas output regulator.

Burner and gas train assembled

Approval:

- EN 676 standard.

Conforming to:

- 89/336/EEC (electromagnetic compatibility)
- 73/23/EEC (low voltage)
- 98/37/EEC (machines)
- 92/42/EEC (performance)
- 90/396/EEC (gas).

Standard equipment:

- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- 7-pole socket
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue
- Hinge
- Grommet.

Available accessories to be ordered separately:

- Remote release kit
- Extended head kit
- LPG kit
- Seal control kit
- Town gas kit
- Alternative combustion head kit
- Balanced flue version.

▼

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

The Riello RDB1 S is a new model of one stage gas burners series, characterized for its small dimensions inspite of its high combustion performance. It is available in conventional flue and balanced flue versions. It has been developed to respond to any request for home heating, conforming to current regulations in force. This model uses the same components designed by Riello for the RDB series. The high quality level guarantees safe working. In developing this burner, special attention was paid to reducing noise, the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

RDB

This model is approved by the EN 676 European Standard and European Directives, Gas Appliance, EMC, Low Voltage, Boiler Efficiency.

The RDB1 S burner is tested before leaving the factory.

201

Ê

b

TECHNICAL DATA

Model work RDB1 S Burner operation mode model							
Modulation ratio at maxutput	Model			▼ RDB1 S			
Modulation ratio at maxutput							
Servorntor type run time s ima ima ima ima Heat output KW 16-47 Meta output Company Marking temperature Company Servorntor Verking temperature Company Company G20 gas denixy KW/Nim* 0/40 Servorntor KW/N/Nm* 0/40 G20 gas denixy KW/N/Nm* 0/71 G20 gas denixy KW/N/Nm* 0/78 G25 gas denixy KW/N/Nm* 0/78 G25 gas denixy KW/N/Nm* 0/78 G25 gas denixy KW/N/Nm* 0/78 G25 gas denixy KW/N/Nm* 0/78 G25 gas denixy KW/N/M* 0/78 G25 gas denixy KW/N/M* 0/78 G26 gas denixy KW/N/M* 0/78 G26 gas denixy KW/N/M* 0/78 G26 gas denixy KW/N/M* 0/78 G26 gas denixy KW/N 0/78 LPG gas denixy KW/N 0/70 Kuitary dectrical supply	Burner opera	tion mode		One stage			
Bin Volticity run time s	Modulation r	atio at max.	output	-			
Image: Project	Servomotor	Servomotor type		-			
Heat output Meal/n Meal/n Meal/n Verking temperatur °C min/max. O/40 Verking temperature °C min/max. O/40 S20 gas delivery Ka/Mn ³ 0.0 G20 gas delivery Ka/Mn ³ 0.0 Ketachrific value C32 gas KM/M ¹ 0.0 G25 gas delivery Ka/Mn ³ 0.78 Ketachrific value C32 gas KM/M ¹ 0.78 G25 gas delivery Km ³ /M 0.78 Ketachrific value LPG gas KM/M ¹ 0.78 G25 gas delivery Km ³ /M 0.78 LPG gas delivery Km ³ /M 0.61.18 LPG gas delivery Nm ³ /M 0.61.18 LPG gas delivery Nm ³ /M 0.61.18 Autilary electrical supply Ph/Hz/V - Autilary electrical supply Ph/Hz/V - Autilary electrical supply Ph/Hz/V - Nota electrical power KW 0.09 Rate motor current A 0.00.09 Motor electrical power		run time	S	-			
Mea/h Mea/h Tight - 40,4 Working temperature °C min./max. 0/40 Net calorific value C22 gas KWh/Nm² 0,71 G20 gas delivery Nm²/h 0,71 G20 gas delivery Nm²/h 0,71 G20 gas delivery Nm²/h 0,71 G25 gas delivery Nm²/h 0,78 G25 gas delivery Nm²/h 0,78 G25 gas delivery Nm²/h 0,78 LPG gas delivery Nm²/h 2,58 LPG gas delivery Nm²/h 2,02 LPG gas delivery Nm²/h 0,6 - 1,8 Fan type Centrifugal with forward curve blades Auxiliary electrical supply Ph/Hz/V	Heat output		kW	16÷47			
Natt addrift value 2C gas kWh/Nm ³ 10 Net addrift value 2C gas kWh/Nm ³ 0,71 C2 gas defivery Nm ³ /h 0,71 Set addrift value 2C gas kWh/Nm ³ 0,71 Net addrift value 2C gas kWh/Nm ³ 0,6 Vert addrift value 2C gas kWh/Nm ³ 0,78 C2 gas defivery Nm ³ /h 0,78 C2 gas defivery Nm ³ /h 0,78 Vert addrift value 2C gas defivery Nm ³ /h 0,78 Vert addrift value 2C gas defivery Nm ³ /h 0,78 Vert addrift value 2C gas defivery Nm ³ /h 0,78 Vert addrift value 2C gas defivery Nm ³ /h 0,78 Vert addrift value 2C gas defivery Nm ³ /h 0,6 - 1,8 Fan type Centrifugal with forward curve blades Aixt interperature max. °C 40 Auxtiliary electrical supply Ph/Hz/V	neat output	Mcal/h		13,8 - 40,4			
Induction loss of a set o	Working tem	perature	°C min./max.	0/40			
g20 gas delivery Nm ³ /h 1.6 - 4.7 Ret calorific value G25 gas kWh/Nm ³ 8,6 G25 gas delivery Nm ³ /h 0.78 G25 gas delivery Nm ³ /h 2.02 Vet calorific value LPG gas kWh/Nm ³ 2.02 LPG gas delivery Nm ³ /h 0.6 - 1.8 Fan type Centrifugal with forward curve blades Aix temperature max. °C 40 Electrical supply Ph/Hz/V 1/50/230 ±10% Auxiliary electrical supply Ph/Hz/V Control box type LANDIS LMG25 Total electrical power kW 0.09 Motor electrical power kW 0.09 Rated motor current A 0.58 Motor start up current A 2.4 Motor protection level P 20 Ignition transformer V1 · V2	Net calorific va	alue G20 gas	kWh/Nm ³	10			
Not calorific value G25 gas KWh/Nm ³ 8,6 G25 gas denisity kg/Nm ³ 0,78 G25 gas denisity kg/Nm ³ 0,78 G25 gas denisity kg/Nm ³ 25,8 LPG gas denisity kg/Nm ³ 25,8 LPG gas denisity kg/Nm ³ 2,02 LPG gas denisity kg/Nm ³ 0,6 - 1,8 Fan type Centrifugal with forward curve blades Aix tremperature max.°C 40 Electrical supply Ph/Lz/V - Control box type - Control box type LANDIS LMG25 Total electrical power kW - Auxiliary electrical power kW - Motor electrical power kW 0,09 Motor start up current A 0,58 Motor start up current A 2,4 Motor start up current A 2,0 Ignition transformer V1 · V2 (-) · 15 kV Ignition transformer V1 · V2 (-) · 25 mA	G20 gas dens	sity	kg/Nm ³	0,71			
Open to the second se	G20 gas deliv	/ery	Nm³/h	1,6 - 4,7			
TopG25 gas deliveryNm³/h1,9 - 5,46Net calorific value LPG gasKWh/Nm³25,8LPG gas densityKg/Nm³2,02LPG gas deliveryNm³/h0,6 - 1,8FantypeCentrifugal with forward curve bladesAir temperaturemax. °C40Electrical supplyPh/Hz/V1/50/230 ±10%Auxiliary electrical supplyPh/Hz/VTotal electrical powerKW0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Motor electrical powerKW0,09Motor start up currentA2,4Motor protection levelIP20Ignition transformerV1 - V2(BRAHMA) separated from the control boxIgnition transformerV1 - V2(-) - 15 kVIn 1/2Centricit (-) - 25 mASound pressureB(A)59,4Sound powerVW-Co emissionmg/kWh-Auxiliary electrical powerKWSound powerVWSound powerKWSound powerVMSound powerKWSound powerKWSound powerKWSound powerKWSound powe	g Net calorific va	alue G25 gas	kWh/Nm ³	8,6			
ProjectionNet calorific value LPG gasKWh/Nm³25,8LPG gas densitykg/Nm³2,02LPG gas deliveryNm³/h0,6 - 1,8LPG gas deliveryNm³/hCentrilugal with forward curve bladesAir temperaturemax. °C40Electrical supplyPh/Hz/V1/50/230 ±10%Auxiliary electrical supplyPh/Hz/V0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Notor electrical powerKW0,09Notor start up currentA0,58Notor start up currentA0,58Notor start up currentA20Ignition transformerVipe(BRAHMA) separated from the control boxIgnition transformerVipe(BRAHMA) separated from the control boxIgnition transformerKIP-Intermittent (at least one stop every 24 h)Sound powerW-Cone missionmg/KWh-		sity	kg/Nm ³	0,78			
VetNet calorific value LPG gaskWh/Nm³25,8LPG gas densitykg/Nm³2,02LPG gas deliveryNm³/n0,6 - 1,8LPG gas deliveryNm³/nCentrilugal with forward curve bladesAir temperaturemax. °C40Electrical supplyPh/Hz/V1/50/230 ±10%Aix temperaturemax. °C40Electrical supplyPh/Hz/V0,09Auxiliary electrical powerkW0,09Auxiliary electrical powerkW0,09Notor electrical powerkW0,09Motor start up currentA0,58Rated motor currentA0,58Motor start up currentA20Ignition transformerVipe(BRAHMA) separated from the control boxIgnition transformerVipe(BRAHMA) separated from the control boxIgnition transformerKB(A)Intermittent (at least one stop every 24 h)Sound pressuredB(A)-Con emissionmg/kWh-	G25 gas deliv	/ery	Nm³/h	1,9 - 5,46			
IPG gas deliveryNm³/h0.6 · 1,8FantypeCentrifugal with forward curve bladesAir temperaturemax. °C40Electrical supplyPh/Hz/V1/50/230 ±10%Auxiliary electrical supplyPh/Hz/VControl boxtypeCentrifugal with forward curve bladesTotal electrical powerKW0,09Auxiliary electrical powerKW0,09Auxiliary electrical powerKW0,09Notor electrical powerKW0,09Notor start up currentA0,58Notor protection levelIP20Ipition transformerVipe(BRAHMA) separated from the control boxIpition transformerV1 · V2(-) · 15 kVIpition transformer6B(A)(-) · 25 mASound powerW-Sound powerW-Co emissionmg/kWh-KitSound powerW-Sound powerW-	Net calorific va	alue LPG gas	kWh/Nm ³	25,8			
FantypeCentrifugal with forward curve bladesAir temperaturemax. °C40Air temperaturemax. °C1/50/230 ±10%Electrical supplyPh/Hz/V1/50/230 ±10%Auxiliary electrical supplyPh/Hz/VControl boxtypeLANDIS LMG25Total electrical powerkW0,09Auxiliary electrical powerkW0,09Auxiliary electrical powerkW0,09Auxiliary electrical powerkW0,09Auxiliary electrical powerkW0,09Auxiliary electrical powerkW0,09Auxiliary electrical powerkW0,09Auxiliary electrical powerkW0,09Motor electrical powerkW0,09Rated motor currentA2,4Motor start up currentA2,4Motor protection levelIP20Ignition transformerV1 - V2(-) - 15 kVIgnition transformerV1 - V2(-) - 25 mAOperationw-Sound powerW-Sound powerW-Co emissionmg/kWh25	LPG gas dens	sity	kg/Nm ³	2,02			
Air temperature max. °C 40 Electrical supply Ph/Hz/V 1/50/230 ±10% Auxiliary electrical supply Ph/Hz/V	LPG gas deliv	/ery	Nm³/h	0,6 - 1,8			
ProtectionNumber NumberFleetrical supplyPh/Hz/V1/50/230 ±10%Auxiliary electrical supplyPh/Hz/VControl boxtypeLANDIS LMG25Total electrical powerKW0,09Auxiliary electrical powerKWProtection levelIP40Notor electrical powerKW0,09Rated motor currentA0,58Motor start up currentA2,4Motor protection levelIP20Ignition transformerV1 · V2() · 15 kVIgnition transformerV1 · V2() · 15 kVOperation~Main59,4Sound pressuredB(A)Sound powerWCo emissionmg/kWh25	Fan		type	Centrifugal with forward curve blades			
ProfectionPh/Hz/VControl boxtypeLANDIS LMG25Control boxtypeLANDIS LMG25Total electrical powerKW0,09Auxiliary electrical powerKWProtection levelIP40Motor electrical powerKW0,09Rated motor currentA0,58Motor start up currentA2,4Motor protection levelIP20Ignition transformerV1 · V2(BRAHMA) separated from the control boxIgnition transformerV1 · V2(-) · 15 kVOperationCIntermittent (at least one stop every 24 h)Sound pressuredB(A)59,4Sound powerW-CO emissionmg/kWh25	Air temperat	ure	max. °C	40			
Control boxtypeLANDIS LMG25Total electrical powerkW0,09Auxiliary electrical powerkWProtection levelIP40Motor electrical powerkW0,09Rated motor currentA0,58Motor start up currentA2,4Motor protection levelIP20Ignition transformertype(BRAHMA) separated from the control boxIgnition transformerV1 · V2() - 15 kVIn 12() - 25 mAOperationBB(A)59,4Sound pressureBB(A)59,4Sound powerWCO emissionmg/kWh25	Electrical sup	ply	Ph/Hz/V	1/50/230 ±10%			
Total electrical power Auxiliary electrical power Protection levelKW0,09Auxiliary electrical power Protection levelIP40Motor electrical power 	Auxiliary elec	trical supply	Ph/Hz/V				
Auxiliary electrical powerkW	Control box		type	LANDIS LMG25			
Protection levelIPIP40Motor electrical powerkW0,09Rated motor currentA0,58Motor start up currentA2,4Motor protection levelIP20Ignition transformertype(BRAHMA) separated from the control boxV1 - V21-12() - 15 kVIgnition transformerBA(A)Intermittent (at least one stop every 24 h)Sound pressuredB(A)59,4Sound powerWC0 emissionmg/kWh25	Total electric	al power	kW	0,09			
Motor protection level IP 20 type (BRAHMA) separated from the control box Ignition transformer V1 · V2 Ignition transformer V1 · V2 Operation In - 12 Sound pressure dB(A) Sound power W CO emission mg/kWh	Auxiliary elec	trical power	kW				
Motor protection level IP 20 type (BRAHMA) separated from the control box Ignition transformer V1 · V2 Ignition transformer V1 · V2 Operation In - 12 Sound pressure dB(A) Sound power W CO emission mg/kWh	Protection le	vel	IP	40			
Motor protection level IP 20 type (BRAHMA) separated from the control box Ignition transformer V1 · V2 Ignition transformer V1 · V2 Operation In - 12 Sound pressure dB(A) Sound power W CO emission mg/kWh	Motor electri	cal power	kW	0,09			
Motor protection level IP 20 type (BRAHMA) separated from the control box Ignition transformer V1 · V2 Ignition transformer V1 · V2 Operation In - 12 Sound pressure dB(A) Sound power W CO emission mg/kWh	Rated motor	current	Α	0,58			
Motor protection level IP 20 type (BRAHMA) separated from the control box Ignition transformer V1 · V2 Ignition transformer V1 · V2 Operation In - 12 Sound pressure dB(A) Sound power W CO emission mg/kWh	Motor start u	p current	А	2,4			
Ignition transformer V1 - V2 () - 15 kV Intermittent Intermittent 25 mA Operation Image: Comparison of the stop every 24 h Sound pressure dB(A) 59,4 Sound power W CO emission mg/kWh 25	Motor protect	tion level	IP	20			
II-12 () - 25 mA Operation Intermittent (at least one stop every 24 h) Sound pressure dB(A) Sound power W C0 emission mg/kWh			type	(BRAHMA) separated from the control box			
Operation Image: Composition of the composition o	Ignition trans	former	V1 - V2	() - 15 kV			
Sound pressure dB(A) 59,4 Sound power W C0 emission mg/kWh 25			1 - 2	() - 25 mA			
Sound power W CO emission mg/kWh 25	Operation			Intermittent (at least one stop every 24 h)			
Sound power W CO emission mg/kWh 25 NOx emission mg/kWh 110	Sound press	ure	dB(A)	59,4			
Image: Second system mg/kWh 25 NOx emission mg/kWh 110	Sound powe	r	w	-			
لله NOx emission mg/kWh 110	CO emission		mg/kWh	25			
		n	mg/kWh	110			
Birective 89/336/EEC, 73/23/EEC, 98/37/EEC, 92/42/EEC	Directive			89/336/EEC, 73/23/EEC, 98/37/EEC, 92/42/EEC			
Directive 89/336/EEC, 73/23/EEC, 98/37/EEC, 92/42/EEC Conforming to EN 676 Certification CE-0085BM0490	Conforming	to		EN 676			
Certification CE-0085BM0490	Certification			CE-0085BM0490			

E

Reference conditions: Temperature: 20 °C Pressure: 1013 mbar Altitude: 0 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

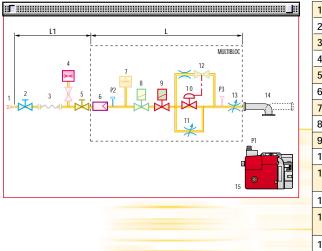
Useful working field for choosing the burner

Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 0 m a.s.l.

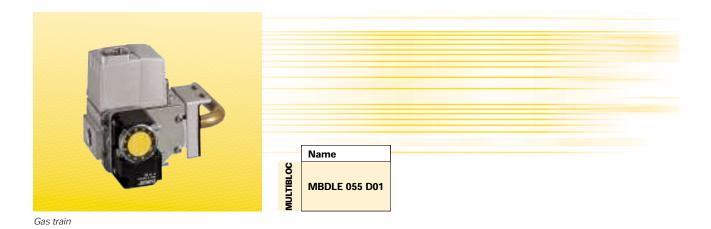
FUEL SUPPLY

T

₿

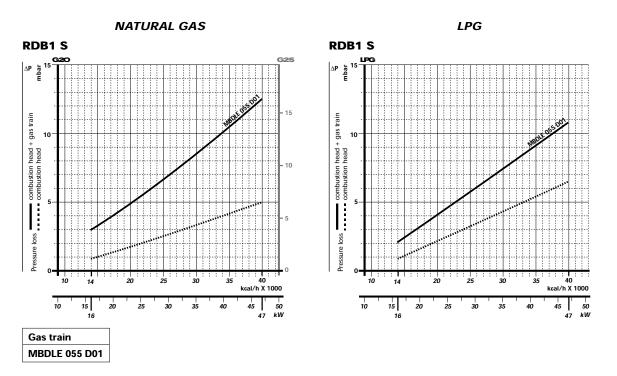

GAS TRAINS

The burner is fitted with the gas train. The gas train is Multibloc type, containing the main components in a single unit, and a valve seal control (as accessory) can be fitted.


Gas train fixed in the burner

MBDLE 055 D01

 Manual valve Vibration damping joint Gas pressure gauge Manual shutter (supplied) Filter Gas pressure switch Safety solenoid Regulation solenoid Pressure regulator Shutter with adjustment screws (brake regulator) Pressure regulator setting device Shutter with adjustment screws (solenoid regulator) Shutter with adjustment screws (solenoid regulator) Combustion head pressure Upstream pressure from the filter Upstream pressure from the control valve Gas train supplied separately L To be performed by the installer 	1	Gas delivery pipe
 4 Gas pressure gauge 5 Manual shutter (supplied) 6 Filter 7 Gas pressure switch 8 Safety solenoid 9 Regulation solenoid 10 Pressure regulator 11 Shutter with adjustment screws (brake regulator) 12 Pressure regulator setting device 13 Shutter with adjustment screws (solenoid regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately 	2	Manual valve
 5 Manual shutter (supplied) 6 Filter 7 Gas pressure switch 8 Safety solenoid 9 Regulation solenoid 10 Pressure regulator 11 Shutter with adjustment screws (brake regulator) 12 Pressure regulator setting device 13 Shutter with adjustment screws (solenoid regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately 	3	Vibration damping joint
 6 Filter 7 Gas pressure switch 8 Safety solenoid 9 Regulation solenoid 10 Pressure regulator 11 Shutter with adjustment screws (brake regulator) 12 Pressure regulator setting device 13 Shutter with adjustment screws (solenoid regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately 	4	Gas pressure gauge
 7 Gas pressure switch 8 Safety solenoid 9 Regulation solenoid 10 Pressure regulator 11 Shutter with adjustment screws (brake regulator) 12 Pressure regulator setting device 13 Shutter with adjustment screws (solenoid regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately 	5	Manual shutter (supplied)
 8 Safety solenoid 9 Regulation solenoid 10 Pressure regulator 11 Shutter with adjustment screws (brake regulator) 12 Pressure regulator setting device 13 Shutter with adjustment screws (solenoid regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately 	6	Filter
 9 Regulation solenoid 10 Pressure regulator 11 Shutter with adjustment screws (brake regulator) 12 Pressure regulator setting device 13 Shutter with adjustment screws (solenoid regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately 	7	Gas pressure switch
10 Pressure regulator 11 Shutter with adjustment screws (brake regulator) 12 Pressure regulator setting device 13 Shutter with adjustment screws (solenoid regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately	8	Safety solenoid
11Shutter with adjustment screws (brake regulator)12Pressure regulator setting device13Shutter with adjustment screws (solenoid regulator)14Gas train-burner adapter15BurnerP1Combustion head pressureP2Upstream pressure from the filterP3Upstream pressure from the control valveLGas train supplied separately	9	Regulation solenoid
regulator)12 Pressure regulator setting device13 Shutter with adjustment screws (solenoid regulator)14 Gas train-burner adapter15 BurnerP1 Combustion head pressureP2 Upstream pressure from the filterP3 Upstream pressure from the control valveL Gas train supplied separately	10	Pressure regulator
13Shutter with adjustment screws (solenoid regulator)14Gas train-burner adapter15BurnerP1Combustion head pressureP2Upstream pressure from the filterP3Upstream pressure from the control valveLGas train supplied separately	11	
regulator) 14 Gas train-burner adapter 15 Burner P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately	12	Pressure regulator setting device
15 BurnerP1 Combustion head pressureP2 Upstream pressure from the filterP3 Upstream pressure from the control valveL Gas train supplied separately	13	
P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately	14	Gas train-burner adapter
P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately	15	Burner
P3 Upstream pressure from the control valve L Gas train supplied separately	P1	Combustion head pressure
L Gas train supplied separately	P2	Upstream pressure from the filter
	P3	Upstream pressure from the control valve
L1 To be performed by the installer	L	Gas train supplied separately
	L1	To be performed by the installer



PRESSURE DROP DIAGRAM

▼

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the value thus calculated represents the minimum required input pressure to the gas train.

• note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion

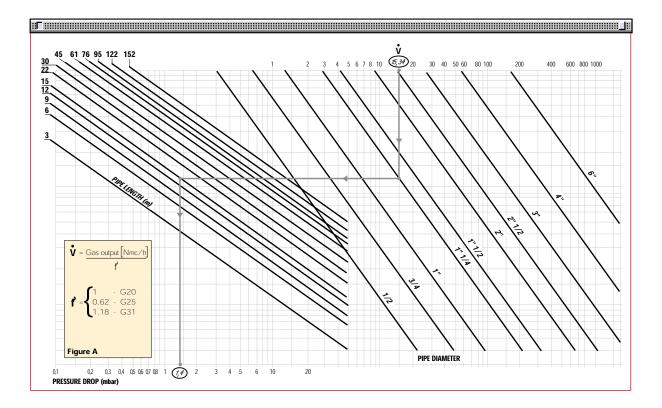
coefficient.

Once the equivalent output has been determined on the delivery scale (\check{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	- conversion coefficient	0.62 (see figure A)
- equivalent	methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$] = 15.34 mc/h


- once the value of 15.34 has been identified on the output scale (\check{V}), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;

- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

▼

VENTILATION

The ventilation circuit ensures low noise level with high performance of pressure and air delivery, inspite of their compact size.

The burner is fitted with an adjustable air pressure switch, conforming to EN 676 standards.

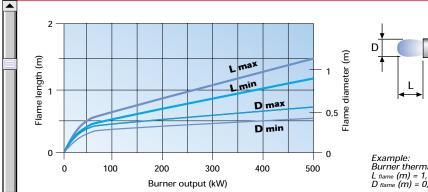
Y

Ê

Y

Ē

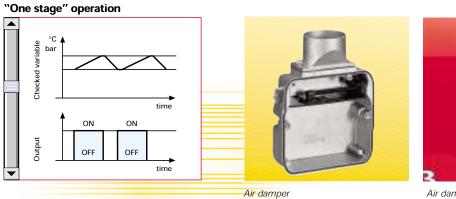
COMBUSTION HEAD


The combustion head in RDB1 S is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all various types of boilers and combustion chambers.

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

Combustion head

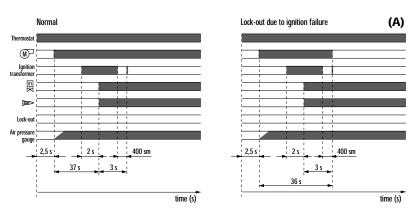
Example: Burner thermal output = $350 \, kW$; L fiame (m) = $1,2 \, m$ (medium value); D fiame (m) = $0,6 \, m$ (medium value)


Dimensions of the flame

ADJUSTMENT

BURNER OPERATION MODE

This model has one stage operation.



Y

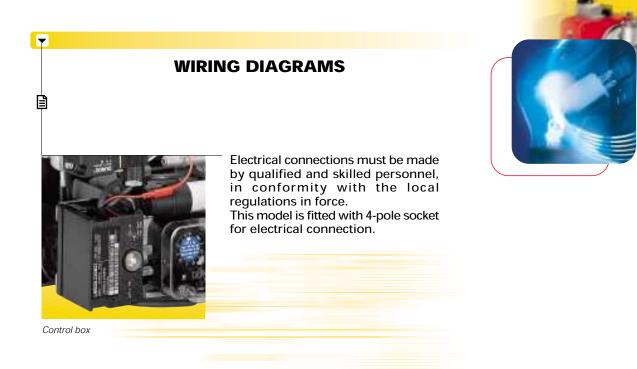
B

Air damper adjustment

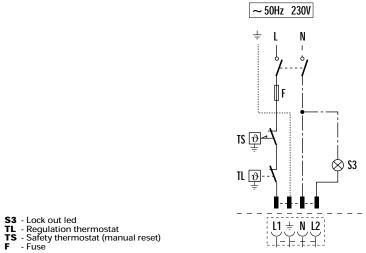
START UP CYCLE

(A) Lock-out is shown by a led on the appliance.

Correct operation


0sThe burner begins the ignition cycle.2,5s - 39,5sPre-purge with the air damper open.39,5s - 42,5sThe ignition transformer starts.

Lock-out due to ignition failure


If the flame does not light within the safety limit (3s) the burner locksout.

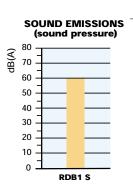
When the flame-failure occurs during working, shut down takes place within one second.

" ONE STAGE" OPERATION

Burner electrical wiring

The following table shows the supply lead sections and types of fuse to be used.

M	odel	▼ RDB1 S
		230V
F	А	T6
L	mm ²	1
F = F	use	L = Lead section



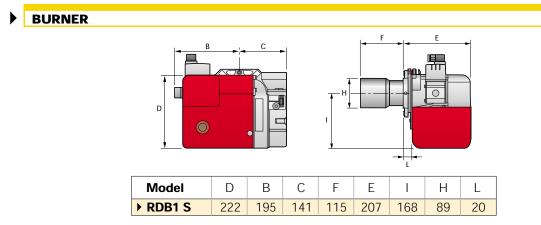
The emission data have been measured in the RDB1 S at maximum output, in conformity with EN 676 standard.

N	0 <u>2</u> EN	/ISS	SIONS
ч ¹²⁰ – чму/бш 80 –			
60 40			
20 — 0 —	RI	DB1	s

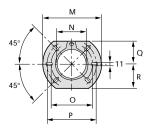
EMISSIONS

Y

Ē

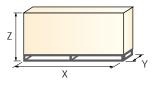

T

Ê



OVERALL DIMENSIONS (mm)

Thanks to certain construction features, this model can be fitted to $\ ^-$ any boiler on the market.



BURNER-BOILER MOUNTING FLANGE

Model	М	Ν	0	Р	Q	R
► RDB1 S	180	91	130	150	72	72

PACKAGING

Model	Х	Y	Z	kg
RDB1 S	395	350	340	12

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel. The burner is set in the factory on standard calibration (minimum output), if necessary adjustments can be made on the basis of the maximum output of the boiler. All operations must be performed as described in the technical handbook supplied with the burner.

BURNER SETTINGS

Y

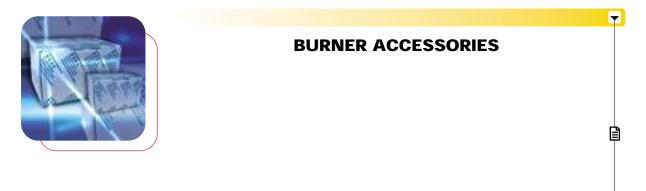
E

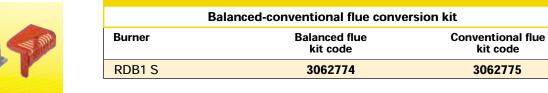
- The air damper position can be adjusted without removing the burner cover.
- Combustion head is fixed.
- RDB1 S burner is fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

The gas train is incorporated in the burner and can be easily adjusted without removing the burner cover.

MAINTENANCE AND ELECTRICAL CONNECTIONS

- Maintenance is easily solved disassemblying the combustion head.
- The 4-pole socket is fixed on the top of the burner.





Balanced-conventional flue conversion kit

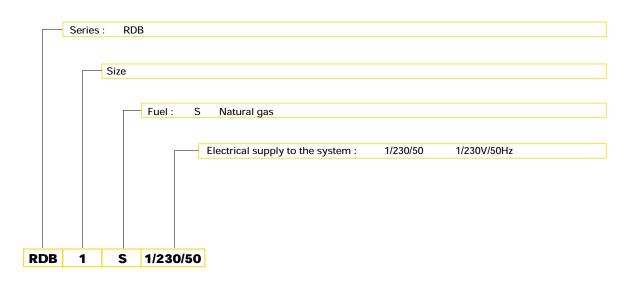
All the RDB series models are easily converted from conventional flue to balanced flue, by replacing the plastic screen on the air intake with the connector for the air supply pipe.

The reverse operation can be carried out on all the models from balanced flue to conventional flue burner, by replacing the connector on the air supply pipe with the plastic screen on the air intake.

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner as shown in the following table.

	LPG kit	
Burner	Kit code for standard head	Kit code for extended head
RDB1 S	3001076	-



 SPECIFICATION

 Image: A special index guides your choice of boiler according to this model.

 Below there is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

AVAILABLE BURNER MODEL

RDB1 S 1/230/50

PRODUCT SPECIFICATIONS

Burner

Monoblock, gas burner, completely automatic, with one stage settings fitted with:

- Fan with forward curve blades
- Cover lined with sound-deadening material
- Air damper, with external adjustment, with no need to remove the cover
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Single stage working valve with ignition gas output regulator.

Approval:

- EN 676 standard.

Conforming to:

- Directive 98/37/EEC (machine)
- Directive 73/23/EEC (low voltage)
- Directive 89/336/EEC (electromagnetic compatibility)
- Directive 92/42/EEC (efficiency).

Standard equipment:

- Sliding flange
- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- Instruction handbook for installation, use and maintenance
- Spare part catalogue.

Available accessories to be ordered separately:

- Balanced-conventional flue conversion kit
- LPG kit.

▼

Lineagrafica

RIELLO s.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

CE

TWO STAGE GAS BURNERS Image: Note of the state of

The Riello 40 FSD series of two stage gas burners, is a complete range of products developed to respond to any request for light industrial process. The Riello 40 FSD series is available in two different models, with an output ranging from 29 to 210 kW, divided in two different structures.

All the models use the same components designed by Riello for the Riello 40 FSD series. The high quality level guarantees safe working.

In developing these burners, special attention was paid to reducing noise, to the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

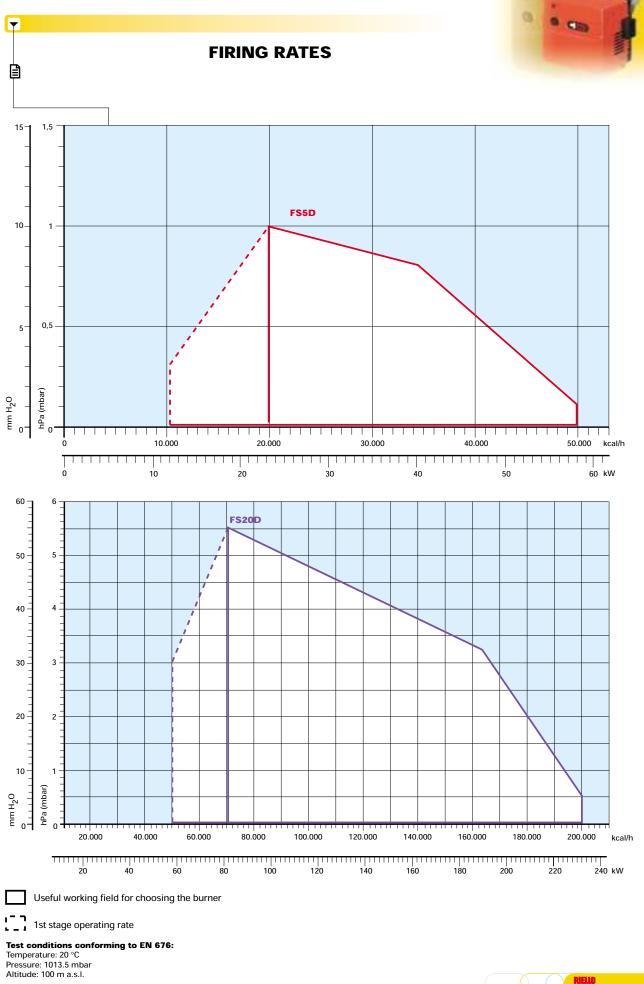
All the models are approved by the EN 676 European Standard and conform to European Directives for EMC, Low Voltage, Machinery and Boiler Efficiency. All the Riello 40 FSD burners are tested before leaving the factory.

(

Ē

TECHNICAL DATA

Model	Model		▼ FS5D	▼ FS20D			
Setting			Two sta	•			
Servo-	type		BERGE	ER			
motor	run time		13				
Heat kW			12/23 - 58	58/81 - 232			
output		Mcal/h	10/20 - 50	50/70 - 200			
	g temperature	°C min./max.	0/40				
Net calori	fic value G20 gas	kWh/Nm ³	10				
G20 gas	density	kg/Nm³	0,71				
G20 gas	output	Nm³/h	1,2/2,3 - 5,8	5,8/8,1 - 23,2			
Net calori	fic value G25 gas	kWh/Nm³	8,6				
G25 gas	density	kg/Nm³	0,78	•			
G25 gas	output	Nm³/h	1,4/2,7 - 6,7	6,7-9,4 - 26,9			
Net calori	fic value LPG gas	kWh/Nm ³	25,8	l de la constante de			
LPG gas density kg/Nm ³		kg/Nm³	2,02	!			
LPG gas output Nm ³ /h		Nm ³ /h	0,4/0,8 - 2,2	2,2/3,1 - 9			
Fan	Fan type		forward tilted blades				
Air tem	perature	max. °C	40				
Electrica	al supply	Ph/Hz/V	1/50/230	±10%			
Aux. ele	ctrical supply	Ph/Hz/V					
Control box type		type	525 SE/3F	509 SE			
Total electrical power kW		kW	0,11	0,25			
Protection level IP		IP	40				
Motor e	lectrical power	kW	0,09	0,15			
Rated m	notor current	Α	0,65	1,4			
Motor s	tart current	Α	4	7,5			
Motor p	rotection level	IP	20				
Ignition	transformer		incorporated in the control box	separated from the control box			
Operatio	Operation		intermittent (at least one halt every 24 h)				
Sound pressure dB(A)		dB(A)	60	73			
CO Emissions mg/kWh		mg/kWh	<40				
NOx Em	issions	mg/kWh	≤120				
Directiv	es		90/396/EEC, 89/336/EEC, 73/23	3/EEC, 98/37/EEC, 92/42/EEC			
Conform	ning to		EN 67				
Certifica	-		CE-0063A	CE-0063AP6680			


Reference conditions:

Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise was measured in the boiler room behind the burner at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Y

₿

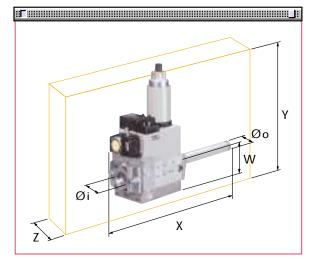
FUEL SUPPLY

GAS TRAINS

The burners are set for fuel supply from either the right or left hand sides.

Depending on the gas output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

The gas train is Multibloc type, containing the main components in a single unit and it can be fitted with the valves seal control (as accessory).


Y

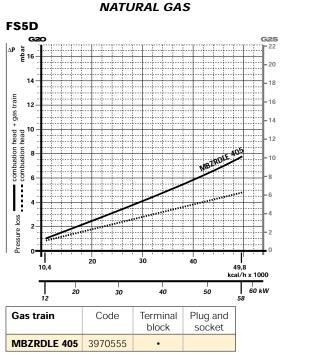
Ê

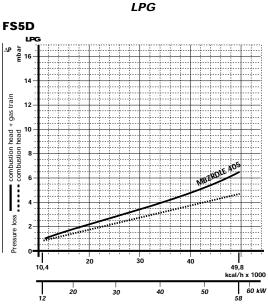
<u>↓ L1</u>	▶ ∢
1	

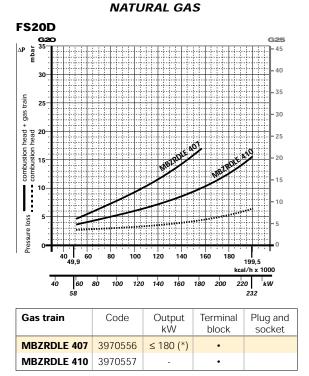
MBZRDLE 405 - 407 - 410

1	Gas delivery pipe
2	Manual valve
3	Vibration damping joint
4	Gas pressure gauge
5	Filter
6	Gas pressure switch
7	Safety solenoid
8	Adjustment solenoid 1st and 2nd stage: firing delivery adjustment (rapid opening) maximum delivery adjustment (slow opening)
9	Pressure regulator
10	Leak detection control device for valves 7 and 8 (accessory)
11	Gas train-burner adapter
12	Burner
P1	Combustion head pressure
P2	Upstream pressure from the filter
L	Gas train supplied separately
L1	To be performed by the installer

The dimensions of the gas trains vary depending on their construction features.


The following table shows the dimensions of the gas trains that can be fitted to Riello 40 FSD burners, intake diameter and the coupling flange to the burner.


	Name	Code	Øi	Øo	X mm	Y mm	W mm	Z mm
8	MBZRDLE 405	3970555	Rp 1/2"	Rp 1/2"	321	256	46	120
ILTIBL	MBZRDLE 407	3970556	Rp 3/4"	Rp 3/4"	371	256	46	120
MU	MBZRDLE 410	3970557	Rp 3/4"	Rp 3/4"	405	315	55	145


PRESSURE DROP DIAGRAMS

▼

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the value thus calculated represents the minimum required input pressure to the gas train.

LPG FS20D 1PG mbar 30 train 25 gas 1 combustion head + combustion head 20 15 10 l Pressure loss 100 120 160 180 40 60 80 140 49 199,5 kcal/h x 1000

120

140 160 180 200

60 58 80 100

40

(*) With natural gas.

note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

220

232

kW

DIMENSIONING OF THE FUEL SUPPLY LINES

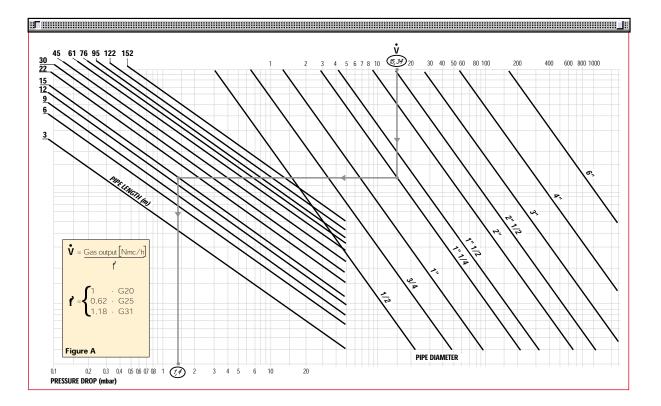
The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).


By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

▼

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

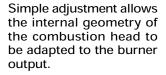
The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

Y

Ê

Y

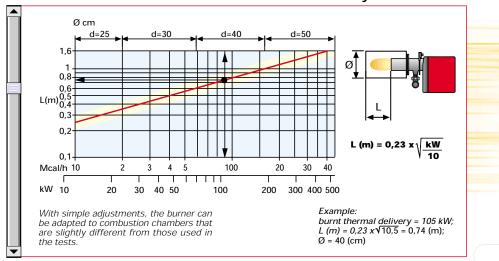

B



Air pressure switch

COMBUSTION HEAD

The combustion head in Riello 40 FSD burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

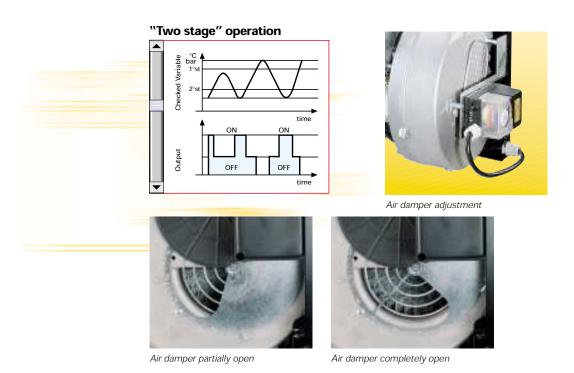


Combustion head

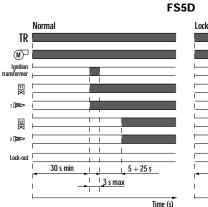
Flange

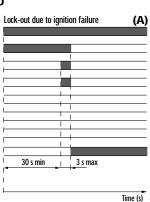
Combustion chamber dimensions used in the test laboratory

BURNERS

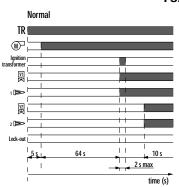

ADJUSTMENT

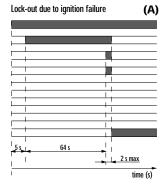
Y


B


BURNER OPERATION MODE

All these models are two stage operation.





FS20D

(A) Lock-out is shown by a led on the appliance.

Correct operation for FS5D model

0s The burner begins the ignition cycle 0s-35s Pre-purge with the air damper open 1gnition.

Lock-out due to ignition failure If the flame does not light within the safety limit (5s) the burner locks-out.

Correct operation for FS20D model

0s The burner begins the ignition cycle 0s-5s Safety time

5s-69s Pre-purge with the air damper open 69s-71s Ignition 1st stage

79s Ignition 2nd stage.

Lock-out due to ignition failure If the flame does not light within the safety limit (~2s) the burner locks-out.

ELECTRICAL CONNECTIONS to be made by the installer

Electrical connections must be made by qualified and skilled personnel in conformity with the local regulations in force. The models are fitted with terminal block for all the electrical connections.

FS20D control box and separated ignition transformer

FS5D control box with integrated ignition transformer

"TWO STAGE" OPERATION

Y

B

- SB Lock out led

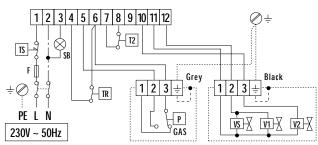
 TR Regulating thermostat

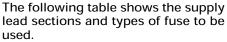
 TS Safety thermostat (manual reset)

 T2 Two stage thermostat

 VS Security valve

 V1 One stage valve


 V2 Two stage valve


 P Gas pressure switch

 F Fuse

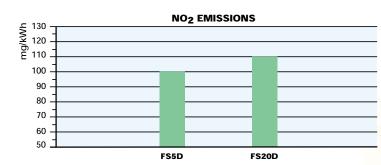
FS5D 1 2 3 4 5 6 7 8 9 10 ر TS SB - T2 ΕŰ Grey Black 1 2 3 ± 123+ ·Ø ÷ TR PELN Ρ <u>vs</u> X ₩. V2 230V ~ 50Hz GAS

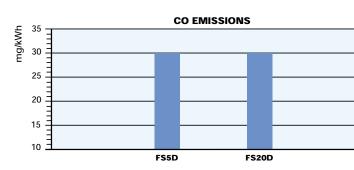
FS20D

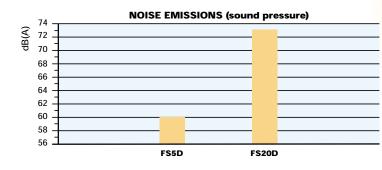
Model	▼ FS5D	▼ FS20D	
	230V	230V	
FΑ	6	6A	
L mm ²	1	1	

F = Fuse L = Lead section

- SB Lock out led
 TR Regulating thermostat
 TS Safety thermostat (manual reset)
 T2 Two stage thermostat
 VS Security valve
 V1 One stage valve
 V1 One stage valve
 V2 Two stage valve
 P Gas pressure switch
 F Fuse



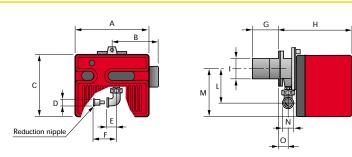

EMISSIONS


T

₿

The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.

OVERALL DIMENSIONS (mm)

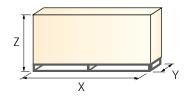


These models are distinguished by their reduced size, in relation to the outputs achieved, which means they can be fitted to any boiler actually on the market.

BURNERS


T

Ê


Model	А	В	С	D	Е	F	G	Н	I	L	Μ	N	0
► FS5D	272	170	233	Rp 3/4	28	65	100	295	91	138	180	Rp 1/2	48
FS20D	350	238	298	Rp 3/4	33	-	120	389	125	152	230	-	67

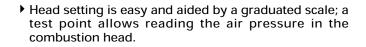
BURNER-BOILER MOUNTING FLANGE

Model	Р	Q	R	S	Т
► FS5D	170	140	-	-	130
▶ FS20D	170	170	155	200	-

PACKAGING

Model	Х	Y	Z	kg
► FS5D	435	345	315	10
► FS20D	525	525	365	20

INSTALLATION DESCRIPTION


Installation, start up and maintenance must be carried out by qualified and skilled personnel.

All operations must be performed as described in the technical handbook supplied with the burner.

The burner is set in the factory on standard calibration (minimum output). If necessary adjustments can be made on the basis of the maximum output of the boiler.

BURNER SETTINGS

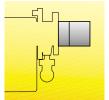
The air damper position is easy to set.

Riello 40 FSD burners are fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

B

MAINTENANCE

• The maintenance position is easily carried out by hinge that joins the body of burner to the flange.



BURNER ACCESSORIES

Extended head kit

"Standard head" burners can be transformed into "extended head" versions by using the special kit.

Below the KITS available for the various burners are listed, showing the original and the extended lengths.

Y

B

Combustion head extension kit						
Burner	Standard head length (mm)	Extended head length (mm)	Kit code			
FS5D	100	125	3000820			
FS20D	120	280	3000873			

End cone with turbulator disk

6	1 DA
1	and a
	-

End cone with turbulator disk					
Burner	Projection	Kit code			
FS5D	+15	3000916			
FS20D	+23	3000919			

Town gas kit

Town gas kit					
Burner	Kit code				
FS5D	3000889				
FS20D	3000893				

LPG kit

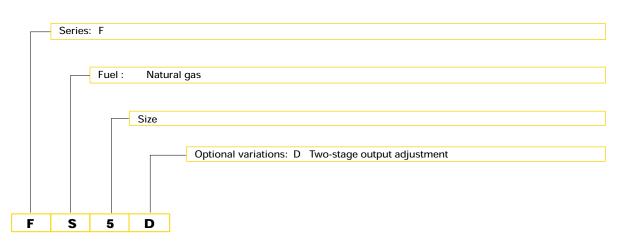
For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table:

	LPG kit
Burner	Kit code
FS5D	3000882
FS20D	3000886

Seal control kit

To test the valve seals on the gas train a special "seal control kit" is available.

Seal control kit					
Burner	Kit code				
FS5D - FS20D	3010123				


SPECIFICATION

Ŧ

₿

A special index guides your choice of boiler from the various models available in the Riello 40 FSD series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

FS5D	12/23 ÷ 58	kW
FS20D	58/81 ÷ 232	kW

SPECIFICATION DESCRIPTION

Burner

 \mathbf{v}

Monoblock, gas burners, completely automatic, with two stage settings fitted with:

- Fan with forward inclined blades
- Metallic cover
- Air damper, completely closed in stand by, driven by an electric servomotor
- Air damper with 1st and 2nd stage adjustement
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Two stage working valve with ignition gas output regulator.

Burner and gas train assembled

Approval:

- EN 676 standard.

Conforming to:

- 90/396/EEC (gas)
- 73/23/EEC (low voltage)
- 89/336/EEC (electromagnetic compatibility)
- 92/42/EEC (performance) 98/37/EEC (machines).

Standard equipment:

- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue
- Hinge
- Grommet.

Available accessories to be ordered separately:

- Remote release kit
- Extended head kit
- LPG kit
- Seal control kit
- Alternative combustion head kit
- Town gas kit.

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

CE

TWO STAGE GAS BURNERS ▶ RIELLO 40 GSD SERIES ▶ GS10D 29/41 ÷ 106 kW ▶ GS20D 58/81 ÷ 210 kW

The Riello 40 GSD series of two stage gas burners, is a complete range of products developed to respond to any request for home heating. The Riello 40 GSD series is available in two different models, whit an output ranging from 29 to 210 kW, divided in two different structures.

All the models use the same components designed by Riello for the Riello 40 GSD series. The high quality level guarantees safe working.

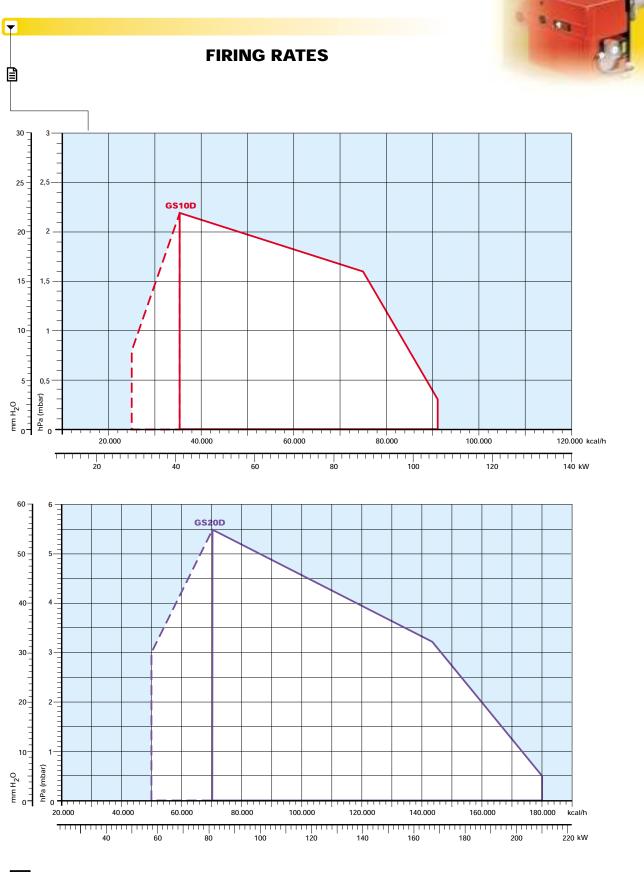
In developing these burners, special attention was paid to reducing noise, to the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

All the models are approved by the EN 676 European Standard and conform to European Directives for EMC, Low Voltage, Machinery and Boiler Efficiency.

All the Riello 40 GSD burners are tested before leaving the factory.

(

TECHNICAL DATA


Model			▼ GS10D	▼ GS20D	
Setting			Two stage		
Servo- motor run time			BERGER		
			1:		
output		kW	29/41 - 106	58/81 - 210	
		Mcal/h	25/35 - 91	50/70 - 180,6	
Working temperature °C		°C min./max.	0 /40		
Net calorific value G20 gas		kWh/Nm ³	1	0	
G20 gas density		kg/Nm ³	0,7	71	
G20 gas output Net calorific value G25 gas		Nm³/h	2,9/4,1 - 10,6	5,8/8,1 - 21	
		kWh/Nm ³	8,	,6	
G25 gas density		kg/Nm ³	0,7	78	
G25 gas	output	Nm³/h	3,4/4,8 - 12,3	6,7-9,4 - 24,4	
Net calorific value LPG gas kWI		kWh/Nm ³	25	,8	
LPG gas density		kg/Nm ³	2,0	02	
LPG gas	output	Nm³/h	1,1/1,6 - 4,1	2,2/3,1 - 8,1	
Fan		type	forward til	ted blades	
Air tem	perature	max. °C	40		
Electrical supply Ph/		Ph/Hz/V	1/50/230 ±10%		
Aux. electrical supplyPh/Hz/VControl boxtype		Ph/Hz/V		-	
		type	509	SE	
Total ele	ectrical power	kW	0,13	0,25	
Protecti	on level	IP	4	0	
Motor e	lectrical power	kW	0,09	0,15	
Rated m	notor current	Α	0,7	1,4	
Motor s	tart current	Α	4	7,5	
Motor p	rotection level	IP	20	0	
Ignition	transformer		separated from	separated from the control box	
Operation intermittent (at least one halt every 24 h				t one halt every 24 h)	
Sound p	pressure	dB(A)	65	72	
CO Emi	ssions	mg/kWh	<4	40	
NOx Em	nissions	mg/kWh	≤1	20	
Directiv	es		90/396/EEC, 89/336/EEC, 73/23/EEC, 98/37/EEC		
Conform	ning to		EN 676		
Certifica	ations		CE-0063AP6680		

Reference conditions:

Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise was measured in the boiler room behind the burner at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

₿

Useful working field for choosing the burner

1st stage operating rate

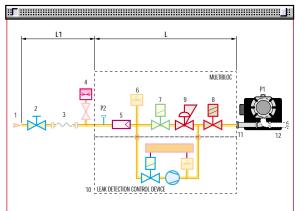
Test conditions conforming to EN 676 standards: Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

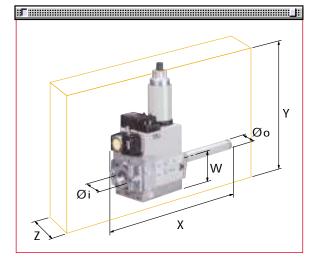
FUEL SUPPLY

GAS TRAINS

The burners are set for fuel supply from either the right or left hand sides.

Depending on the gas output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.


The gas train is Multibloc type, containing the main components in a single unit and it can be fitted with the valves seal control (as accessory).



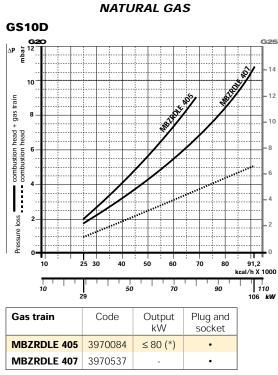
Y

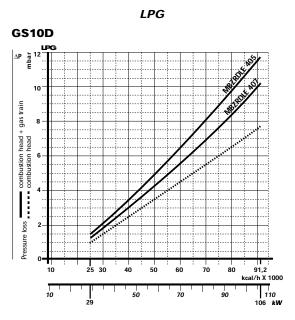
Ê

MBZRDLE 405 - 407 - 410

1	Gas delivery pipe
2	Manual valve
3	Vibration damping joint
4	Gas pressure gauge
5	Filter
6	Gas pressure switch
7	Safety solenoid
8	Adjustment solenoid 1st and 2nd stage: firing delivery adjustment (rapid opening)
	maximum delivery adjustment (rapid opening)
9	Pressure regulator
10	Leak detection control device for valves 7 and 8 (accessory)
11	Gas train-burner adapter
12	Burner
P1	Combustion head pressure
P2	Upstream pressure from the filter
L	Gas train supplied separately
L1	To be performed by the installer

The dimensions of the gas trains vary depending on their construction features.

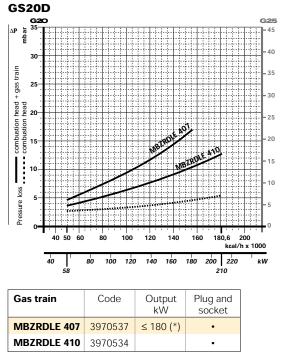

The following table shows the dimensions of the gas trains that can be fitted to Riello 40 GSD burners, intake diameter and the coupling flange to the burner.

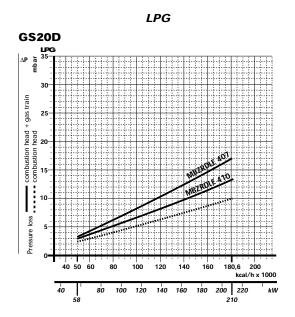

	Name	Code	Øi	Øo	X mm	Y mm	W mm	Z mm
	MBZRDLE 405	3970084	Rp 1/2"	Rp 1/2"	321	256	46	120
S	MBZRDLE 407	3970537	Rp 3/4″	Rp 3/4"	371	256	46	120
JUTTIBLOC	MBZRDLE 407	3970556	Rp 3/4"	Rp 3/4"	371	256	46	120
MUI	MBZRDLE 410	3970534	Rp 3/4″	Rp 3/4"	405	315	55	145
	MBZRDLE 410	3970557	Rp 3/4"	Rp 3/4"	405	315	55	145

PRESSURE DROP DIAGRAMS

▼

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the value thus calculated represents the minimum required input pressure to the gas train.





-

(*) With natural gas.

(*) With natural gas.

DIMENSIONING OF THE FUEL SUPPLY LINES

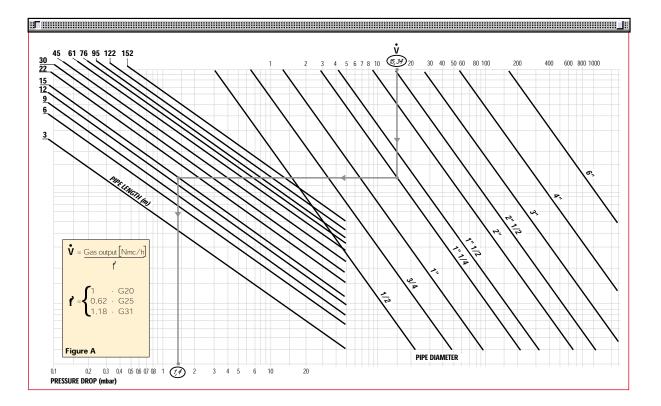
The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).


By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

▼

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

Y

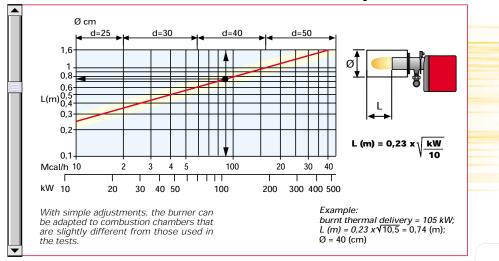
B

Y

₿

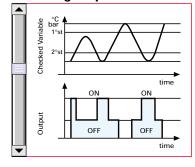
Air pressure switch

COMBUSTION HEAD


The combustion head in Riello 40 GSD burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

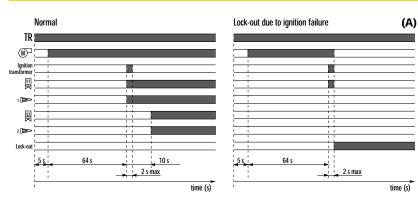
Combustion chamber dimensions used in the test laboratory


ADJUSTMENT

BURNER OPERATION MODE

All these models are two stage operation. The Riello 40 GSD series of two stage burners allows operating at both full and reduced output, with consequent reduction in turning the burner on and off, their giving better performance to the boiler.

During stand-by, the air damper is completely closed (controlled by an electric servomotor) and prevents heat loss due to the flue draught.


"Two stage" operation

Air damper adjustment

IGNITION

(A) Lock-out is shown by a led on the appliance.

Correct operation

0sThe burner begins the ignition cycle0s-5sSafety time5s-69sPre-purge with the air damper open69s-71sIgnition 1st stage79sIgnition 2nd stage.

Lock-out due to ignition failure

If the 1st stage flame does not light within the safety limit (~2s) the burner locks-out.

Y

B

ELECTRICAL CONNECTIONS to be made by the installer

GS10D - GS20D

Electrical connections must be made by qualified and skilled personnel in conformity with the local regulations in force. The 7-pole socket, the 4-pole socket (for connecting the 2nd stage thermostat and the hour meter) and the 6-pole socket (for connection to the gas train) are connected to the equipement and fixed into the burner.

Y

B

The 7 and 4-pin plugs are supplied for connection to the boiler.

Appliance fitted with 7-pole, 6-pole and 4-pole sockets

"TWO STAGE" OPERATION

Burner electrical wiring

ш Ν 50Hz 230V F IS-4 TR ⊗sb h1 7-pin plug ÷_N_T1_T2_S3_B4 7-pole socket L1 T2 (*) h2 I–I–I –I –I 4-pin plug B5_T6_T7_T8 4-pole socket Ĭ–Ĭ–Ĭ–Ĭ

स्र का स्र क Ρ +321 Grev Blad 6-pole socket 1 È 1 2 3 6-pin plug Ph ÷ N ++++Ŧ

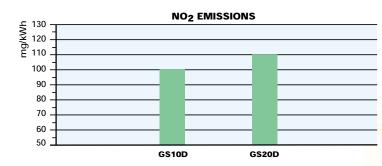
Gas train electrical wiring

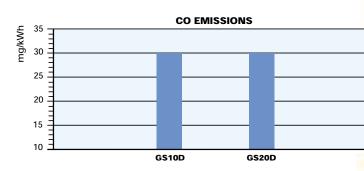
- h1
- h2
- One stage counter hours (230V 0,1A max.)
 Two stage counter hours (230V 0,1A max.)
- SB - Remote lock out signal (230V 0,1A max.)
- (230V 0,1A max.) TR Regulating thermostat TS Safety thermostat (manual reset) T2 Two stage thermostat VS Safety valve V1 One stage valve V1 One stage valve P Gas pressure switch F Fuse

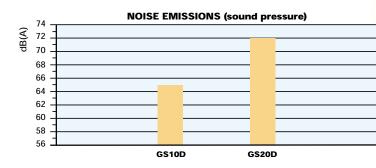
- Connect 2nd stage thermostat (*) between clamps T6 and T8 removing the bridge.

The following table shows the supply lead sections and types of fuse to be used.

Model	▼ GS10D	▼ GS20D
	230V	230V
FΑ	6	Т6
L mm ²	1	1




EMISSIONS

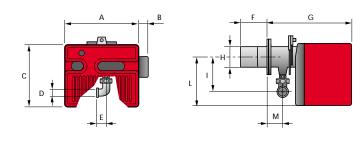

Y

₿

The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.

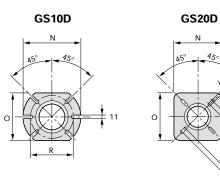
Special attention has been paid to noise reduction. All models are fitted with soundproofing material inside the cover.

OVERALL DIMENSIONS (mm)

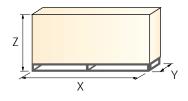


These models are distinguished by their reduced size, in relation to the outputs achieved, which means they can be fitted to any boiler actually on the market.

BURNERS


T

₿


Model	А	В	С	D	E	F	G	Н	I	L	М
→ GS10D	305	95	262	Rp 3/4"	33	110	347	105	142	204	61
► GS20D	350	95	298	Rp 3/4"	33	120	389	125	152	230	67

BURNER-BOILER MOUNTING FLANGE

Model	N	0	Р	Q	R
► GS10D	185	160	-	-	130
► GS20D	170	170	155	200	-

PACKAGING

Model	Х	Y	Z	kg
► GS10D	485	473	320	16
► GS20D	525	525	365	21

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

All operations must be performed as described in the technical handbook supplied with the burner. The burner is set in the factory on standard calibration (minimum output). If necessary adjustments can be made on the basis of the maximum output of the boiler.

BURNER SETTINGS

The air damper position can be adjusted without removing the burner cover.

Head setting is easy and aided by a graduated scale; a test point allows reading the air pressure in the combustion head.

Riello 40 GSD burners are fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

B

MAINTENANCE

• The maintenance position is easily carried out by hinge that joins the body of burner to the flange.

BURNER ACCESSORIES

Extended head kit

▼

B

"Standard head" burners can be transformed into "extended head" versions by using the special kit.

Below the KITS available for the various burners are listed, showing the original and the extended lengths.

 ſ		
I. A		
\bigcirc		

Combustion head extension kit					
Burner	Standard head length (mm)	Extended head length (mm)	Kit code		
GS10D	110	170	3000864		
GS20D	120	280	3000873		

End cone with turbulator disk

	End cone with turbulator dis	k
Burner	Projection	Code
GS10D	+18	3000918
GS20D	+23	3000919

Town gas kit

Town gas transformation kit				
Burner	Kit code			
GS10D	3000891			
GS20D	3000893			

Seal control kit

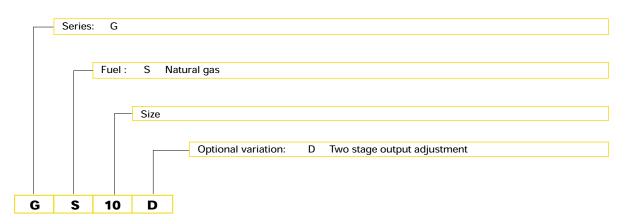
To test the valve seals on the gas train, a special "seal control kit" is available.

Seal control kit				
Burner	Kit code			
GS10D - GS20D	3010123			

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table:

LPG kit	
Burner	Kit code
GS10D	3000884
GS20D	3000886


SPECIFICATION

▼

₿

A special index guides your choice of boiler from the various models available in the Riello 40 GSD series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

AVAILABLE BURNER MODELS

GS10D	29/41 ÷	106	kW
GS20D	58/81 ÷	210	kW

SPECIFICATION DESCRIPTION

Burner

 \mathbf{v}

Monoblock, gas burners, completely automatic, with two stage settings fitted with:

- Fan with forward inclined blades
- Cover lined with sound-deadening material
- Air damper, completely closed in stand by, driven by an electric servomotor
- Air damper with 1st and 2nd stage adjustement
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Two stage working valve with ignition gas output regulator.

Burner and gas train assembled

Approval:

- ĒN 676 standard.

Conforming to:

- 90/396/EEC (gas)
- 73/23/EEC (low voltage)
- 89/336/EEC (electromagnetic compatibility)
- 92/42/EEC (performance)
- 98/37/EEC (machines).

Standard equipment:

- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- 7-pole socket
- 4-pole socket
- Hinge
- Grommet
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Extended head kit
- LPG kit
- Seal control kit
- Alternative combustion head kit
- Town gas kit.

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

TWO-STAGE PROGRESSIVE AND MODULATING GAS BURNERS ► RIELLO 40 GS/M SERIES ► GS 10/M 22/42 ÷ 106,0 kW ► GS 20/M 43/82 ÷ 192,4 kW

CE

The Riello 40 GS/M series of two stage progressive or modulating gas burners, is a complete range of products developed to respond to any request of gas burners for hot air generator according to PrEN 1020. These new models complete the Riello 40 gas series which prides itself on many years of experience in all the world in the field of residential heating and soft industrial applications. This series of burners is available in two different models with an output ranging from 22 to

192,4 kW, divided in two different structures.

Basic version of these models has two stage progressive operation. A simple modification, adding a component, permits obtaining modulating operation with a rate 1 : 4. The burners are supplied air fuel ratio control gas trains.

This more advanced version can better satisfy market needs for applications where modulation is requested to obtain highest plant efficiency. In developing these burners, special attention was paid to the ease of installation and adjustment,

to maintaining the smallest size possible and obtaining high performance for modulating operation to fit into any sort of application available on the market.

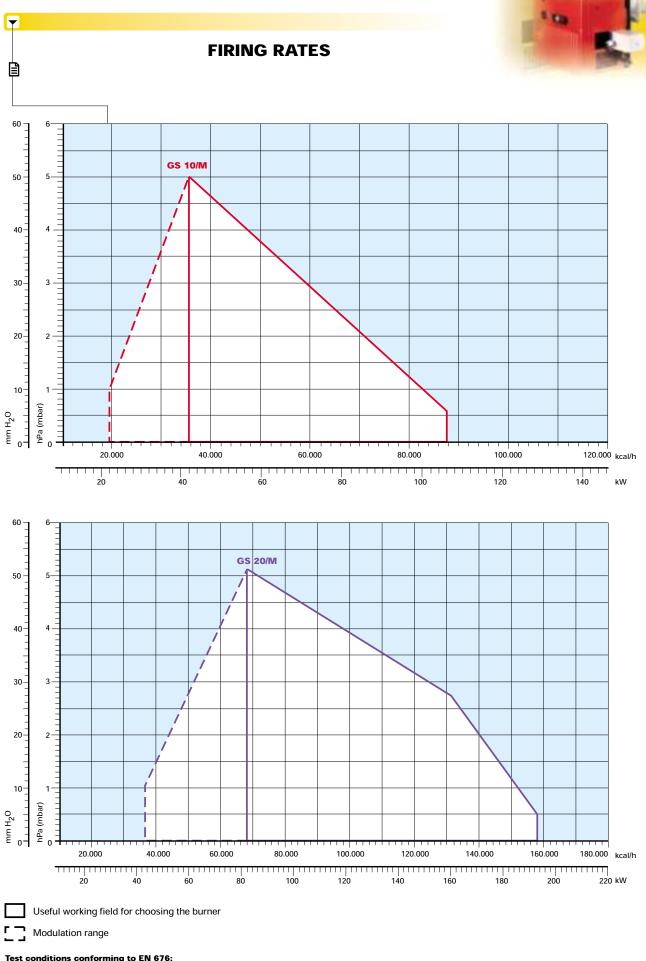
All the models are approved by the EN 676 European Standard and they conform to European Directives: Gas Appliances, EMC, Low Voltage, Machinery and Boiler Efficiency.

(

TECHNICAL DATA

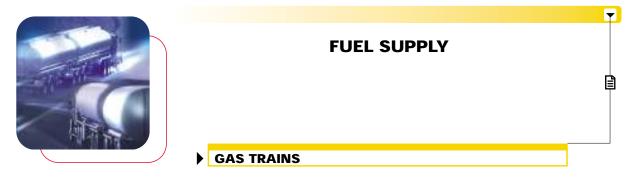
	Model			▼ GS 10/M	▼ GS 20/M			
	Catting							
	Setting			Modulating (with regulator	-			
	Servo- motor	type		SQN				
		run time	kW	30				
	Heat output		KW Mcal/h	22/42÷106	43/82÷192,4			
	-		°C min./max.	18,9/36,1÷91,16 0 - 4	37/70,5÷165,5			
	-	g temperature	kWh/Nm ³					
	Net calor G20 gas	ific value	kcal/Nm ³	10				
	-	doncity	kg/Nm ³	8.60				
	-	density	Nm ³ /h	0,7				
dat		delivery	kWh/Nm ³	2,2/4,2÷10,6	4,3/8,2÷19,24			
air	Net calor LPG gas	ific value	kcal/Nm ³	25,				
Fuel / air data	-	domoitu		10				
Τŭ	-	density	kg/Nm ³ Nm ³ /h	2,01				
	-	delivery		0,85/1,63÷4,11	1,67/3,18÷7,46			
	Fan		type max °C	Forward				
		perature		60				
		al supply	Ph/Hz/V	1/230/50				
		ctrical supply	Ph/Hz/V	1/230				
	Control		type	LMG				
		ectrical power	kW	0,130	0,25			
		otal current	A IP	0,8	1			
		on level		40				
dat	Motor s		Nfasi/V/Hz	1/230/50				
a		ectrical power	kW	0,09	0,15			
tric.		notor current	A	0,75	0,95			
ē		tart current	A	2,25	2,85			
Ξ		rotection level		20				
		ctrical power	kW	0,04				
	-	rated current	Α	0,5				
	Ignition transfor			230V - 12				
				0.2A - 2				
	Operatio		-10(4)	Intermi				
suc	•	pressure	dB(A)	65	72			
ssic	Sound o	-	W	-				
E	CO emis		mg/kWh	15	15			
	NOx em		mg/kWh		70/00/550 00/40/550			
20.	Directiv			90/396/EEC, 89/336/EEC,				
ppr	Conforn Certifica	-		EN 6				
4	Certifica	luons		CE-0085A	AU2307			

Reference conditions:


Ē

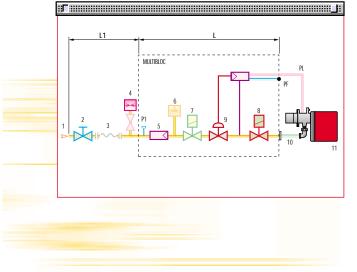
Temperature: 20 °C Pressure: 1013.5 mbar

Altitude: 100 m a.s.l.


Noise was measured in the boiler room behind the burner at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Test conditions conforming to EN 676: Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.



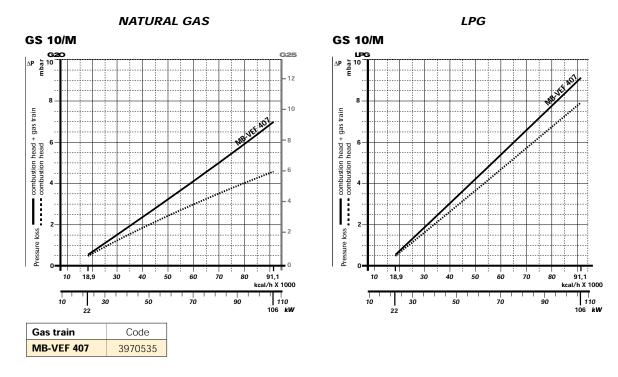
The burners are set for fuel supply from either the right or left hand sides.


Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

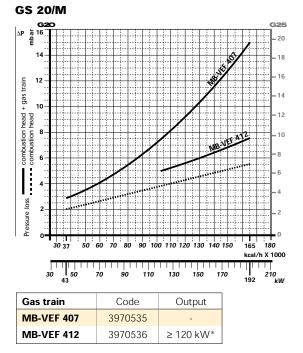
The gas train is Multibloc type, containing the main components in a single unit. A valve seal control (as accessory) can be fitted to the Multibloc gas trains.

MB-VEF 407-412

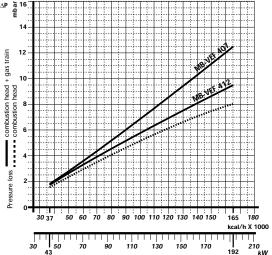
1	Gas inlet
2	Manual tip
3	Antivibrating joint
4	Gas pressure gauge
5	Gas filter
6	Min gas pressure switch
7	Safety gas valve
8	Gas valve
9	Gas regulator
10	Adapter
11	Burner
PF	Impulse line combustion chamber
PL	Impulse line combustion head
P1	Gas pressure gauge
L	Gas train to be ordered separately
L1	Supplied by the installer


The following table shows the dimensions of the gas trains which can be fitted to Riello 40 GS/M burners, intake diameter and the coupling flange to the burner.

	Name	Code	Øi	Øo	X mm	Y mm	Z mm
BLOC	MB-VEF 407	3970535	Rp 3/4"	Rp 3/4"	430	230	120
MULTI	MB-VEF 412	3970536	Rp 1"	Rp 3/4"	465	255	145



▼


The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the value thus calculated represents the minimum required input pressure to the gas train.

NATURAL GAS

GS 20/M

LPG

* With natural gas.

note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

1.00

DIMENSIONING OF THE FUEL SUPPLY LINES

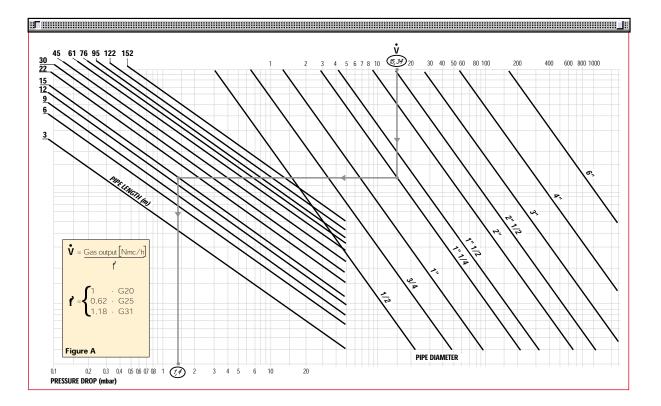
The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).


By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

▼

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

Min and Max air pressure switches

Air suction

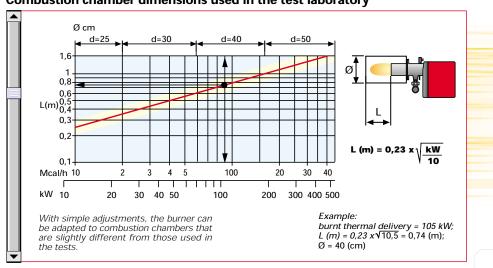
Y

Ê


Y

B

COMBUSTION HEAD


The combustion head in Riello 40 GS/M Heater burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

Combustion chamber dimensions used in the test laboratory

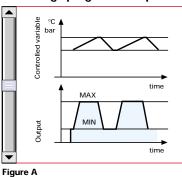
ADJUSTMENT

BURNER OPERATION MODE

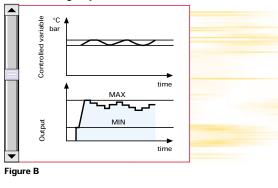
All these models in standard version are two-stage progressive operation. Adding the output regulator device they are modulating operation.

On "two-stage progressive" operation, the burner gradually adapts the output to the requested level, by varying between two pre-set levels (see figure A).

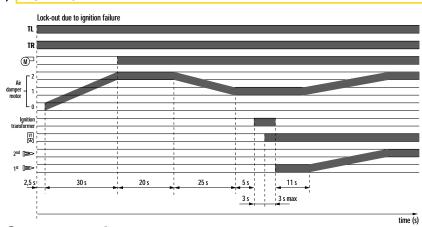
On "modulating" operation, normally required in steam generators, in superheater boilers or diathermic oil burners, a specific regulator and probes are required. These are supplied as accessories that must be ordered separately. The burner can work for long periods at intermediate output levels (see figure B).



Air damper adjustment


Y

B


"Two-stage progressive" operation

"Modulating" operation

Correct operation

0s	The burner begins the ignition cycle.
0s-2,5s	Safety time.
2,5s-32,5s	Progressive open of the air damper until the
	2nd stage position.
32,5s-52,5s	Pre-purge at the 2nd stage.
	The air damper closes until 1st stage position.
77,5s-82,5s	
82,5s-88,5s	The ignition transformer starts.
85,5s	The solenoid opens.
88,5s-99,5s	Ignition 1st stage.
00 50	lanition 2nd stage

99,5s Ignition 2nd stage.

If the flame does not light within the safety limit (~3s) the burner locks-out. Lock-out is shown by a led on the appliance.

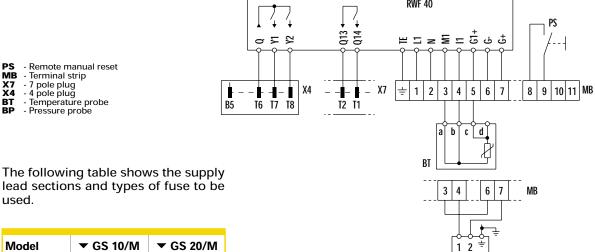
ELECTRICAL CONNECTIONS to be made by the installer

T

B

Electrical connections must be made by qualified and skilled personnel in conformity with the local regulations in force.

The 7-pole socket is incorporated inside the burner, the 4pole socket (for connecting the 2nd stage thermostat to the hour meter) and the 6-pole (for connection to the gas train) are already connected to the equipment and fixed to the inside of the burner.


The 7 and 4-pin plugs are also supplied for connection to the boiler.

Appliance fitted with 7-pole, 6-pole and 4-pole sockets

"TWO STAGE PROGRESSIVE" OPERATION B5 T6 T7 T8 ↓ ↓ ↓ ↓ ↓ X4 8 9 MB S3 T2 T1 ÷ [1 - ⊪ ∎ <u>B</u>4 Ν Ν ᆂ Ph X7 ╨╬┕╉ h2 IN PG PS TR ₽ Ţ Ч h1 \otimes ϑP PS - Remote manual reset MB X7 X4 X6 S TL Terminal strip 7 Pole plug 4 pole plug 6 pole plug 2nd stage hourcounter High-low mode control device system TS ⊕P ⊥ ϑP h2 TR VS VR Ist stage hourcounter Remote lock-out signal Manual burner stop switch Limit control device system h1 S IN TL TS PG VR VS 1,5 mm² Safety control device system Min. gas pressure switch Adjustment valve Safety valve PE N ~ 50Hz 230V " MODULATING OPERATION" ۸ . RWF 40 4 ′₊

	RIELO
	BURNERS

BP 4/20mA

mm² 1 L = Lead section

230V

Τ6

230V

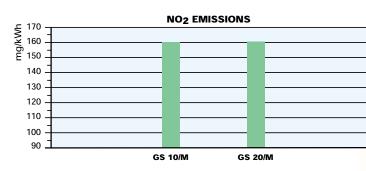
Τ6

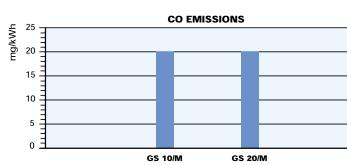
1

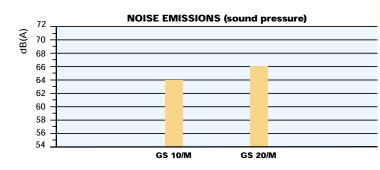
F = Fuse

А

F




EMISSIONS

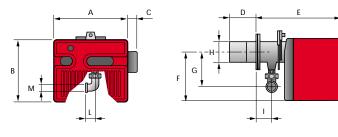

Y

₿

The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.

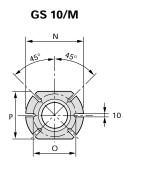
Special attention has been paid to noise reduction. All models are fitted with sounddeadening material inside the cover.

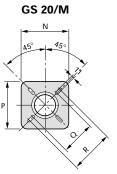
OVERALL DIMENSIONS (mm)



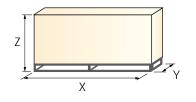
These models are distinguished by their reduced size, in relation to the outputs achieved, which means they can be fitted to any boiler actually on the market.

BURNER


T


Ê

Model	А	В	С	D	E	F	G	Н	I	L	М
▶ GS 10/M	305	262	120	128	347	204	142	105	61	33	Rp 3/4"
▶ GS 20/M	350	298	37	120	389	230	170	125	67	33	Rp 3/4"


BURNER-BOILER MOUNTING FLANGE

Model	N	0	Р	Q	R
▶ GS 10/M	185	130	160	-	-
▶ GS 20/M	170	-	170	155	200

PACKAGING

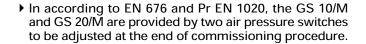
Model	Х	Y	Z	kg
▶ GS 10/M	495	480	320	16
▶ GS 20/M	550	525	365	17

INSTALLATION DESCRIPTION


Installation, start up and maintenance must be carried out by qualified and skilled personnel.

All operations must be performed as described in the technical handbook supplied with the burner.

The burner is set in the factory on standard calibration (minimum output). If necessary adjustments can be made on the basis of the maximum output of the boiler.


BURNER SETTINGS

➤ The gas flow rate for both high and low capacity must be done by using the screws V and N on the gas valve group. The air flow must be adjusted at maximum output by the air damper.

E

 If necessary it is possible to increase the minimum output by moving a cam of the air servomotor.

MAINTENANCE

Particular care is given to the design of the burner to ensure ease of maintenance. The burner body is hinged to permit quick and easy access to the combustion head for maintenance and setting.

To make friendly all the operations on the burner, the internal and external components are connected by plugs and sockets.

BURNER ACCESSORIES

LPG transformation kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table:

		LPG transformation kit	
	Burner		Kit code
	GS 10/M		3000884
	GS 20/M		3000886

Extended heads

-

B

Standard head" burners can be transformed into "extended head" versions by using the special kit. Below the KITS available for the various burners are listed, showing the original and the extended lengths.

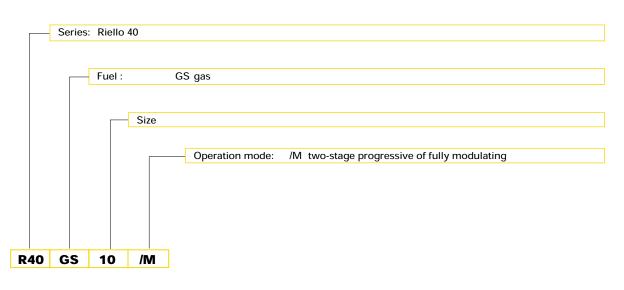
		Combustion hea	d extension kit	
┝┙┙ ┝┹┨	Burner	Standard head length (mm)	Extended head length (mm)	Kit code
U U	GS10/M	128	188	3000864
	GS20/M	120	280	3000873

Accessories for modulating setting

To obtain modulating setting, the R40/M series of burners requires a regulator with three point outlet controls. The relative temperature or pressure probes fitted to the regulator, must be chosen on the basis of the application.

The following table lists the accessories for modulating setting with their application range.

REGULATOR		PROBE			
Туре	Code	Туре	Range (°C) (bar)	Code	
RWF 40	3001074	Temperature PT 100	-100 ÷ 500°C	3010110	
		Pressure 4 ÷ 20 mA	0 ÷ 2,5 bar	3010213	
		Pressure 4 ÷ 20 mA	0 ÷ 16 bar	3010214	


SPECIFICATION

Ŧ

₿

A special index guides your choice of boiler from the various models available in the R 40/M series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

LIST OF	AVAILABLE MODELS	

GS 10/M Heater	22/42 ÷ 106,0	kW
GS 20/M Heater	43/82 ÷ 192,4	kW
GS 10/M	22/44 ÷ 102,0	kW (in progress)
GS 20/M	40/84 ÷ 195,0	kW (in progress)

SPECIFICATION DESCRIPTION

Burner

Monoblock, gas burners, completely automatic, high/low progressive operation mode or fully modulating by using a regulator:

- Ratio air/fuel controlled by checking both the air and the gas flows
- Two pressure switches on the burner, to make sure the burner operation, detecting both the fan and the chimney fonctions
- Remote reset available
- Servomotor to drive the air damper to fully closed position at stand-by, low and high fire position
- Turn down fire 1:4
- Fan with forward inclined blades
- Metallic cover
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
 - additional device, to keep short the flame shape
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Single stage working valve
- Self-adapting regulator, to adjust the gas flow following the air flow.

Burner and gas train assembled

Approval:

- EN 676 standard
- In accordance to PrEN 1020 (Heaters).

Conforming to European Directives:

- 90/396/EEC (gas)
- 73/23/EEC (low voltage)
- 89/336/EEC (electromagnetic compatibility)
- 92/42/EEC (efficiency).

Standard equipment:

- Hinge to turn the burner left-side or right-side for the maintenance position
- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- 7-pin plug with capacitor for EMC
- 4-pin plug to connect the high-low thermostat
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- LPG transformation kit
- RWF 40 for modulating operation
- Temperature and pressure probe.

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

CE

SINGLE-STAGE GAS BURNER ► GULLIVER RS SERIES ► RS5 160 ÷ 330 kW

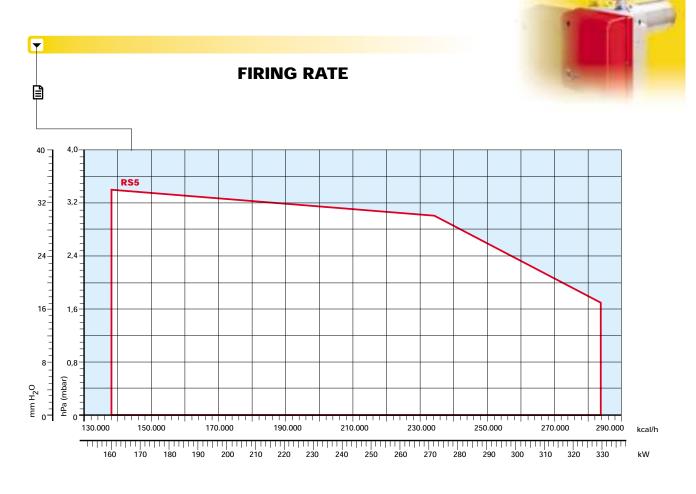
The Riello Gulliver RS5 is a new model of the series of single stage gas burners, characterized for its small dimensions inspite of its high combustion performance. It has been developed to respond to any request for home heating, conforming to current regulations in force. This model uses the same components designed by Riello for the Gulliver series. The high

quality level guarantees safe working. In developing this burner, special attention was paid to reducing noise, the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

This model is approved by the EN 676 European Standard and European Directives, Gas Appliance, EMC, Low Voltage, Boiler Efficiency. The Gulliver RS5 burner is tested before leaving the factory.

Ê

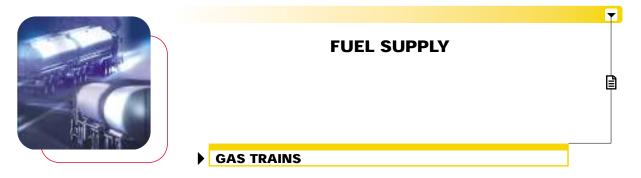
h


	TE(Снг	VIC	AL	DA	TA
--	-----	-----	-----	----	----	----

	Model		▼ RS5			
	Setting		Single-stage			
	Servo- type		R.B.L.			
	motor run time		6÷28			
	Heat	kW	160 - 330			
	output	Mcal/h	137,6 - 283,8			
	Working temperature °C min./max		0/40			
	Net calorific value G20 gas	kWh/Nm ³	10			
	G20 gas density	kg/Nm ³	0,71			
	G20 gas delivery	Nm³/h	16 - 33			
a	PCI gas G25	kWh/Nm ³	8,6			
data	G25 gas density	kg/Nm ³	0,78			
air	G25 gas delivery	Nm³/h	18,6 - 38,4			
Fuel / air	Net calorific value LPG gas kWh/Nm ³		25,8			
Š,	LPG gas density kg/Nm ³		2,02			
	LPG gas delivery	Nm ³ /h	6,2 - 12,8			
	Fan	type	forward tilted blades			
	Air temperature	max °C	40			
	Electrical supply	Ph/Hz/V	1/50/230 ±10%			
	Auxiliary electrical supply	Ph/Hz/V	-			
	Control box type		R.B.L. 568			
ta	Total electrical output kW		0,43			
data	Protection level IP		40			
cal	Electric motor output	kW	0,43			
Electrical	Rated motor current A		2			
Ē	Motor take-off current	Α	8,5			
	Motor protection level	IP	20			
	Ignition transformer		incorporated in the control box			
	Operation		intermittent (at least one halt every 24 h)			
ns	Sound pressure	dB(A)	70			
ssio	CO emissions	mg/kWh	< 40			
Ē	NOx emissions mg/kWh		≤ 120			
val	Directives		90/396/CEE, 89/336/CEE, 73/23/CEE, 92/42/CEE			
Approval Emissions	Conforming to		EN 676			
Ap	Certifications		CE - 0085 AQ0409			

Ē

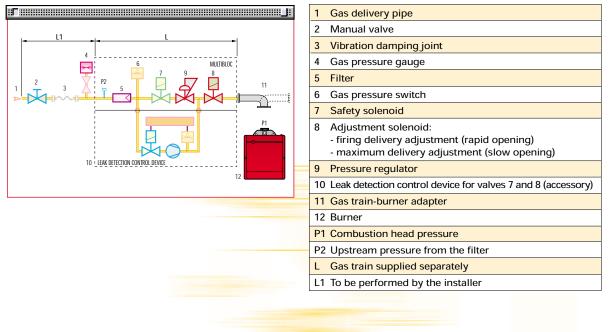
Reference conditions: Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise was measured in the boiler room behind the burner at a distance of 1 meter.


Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

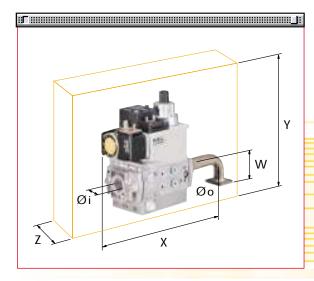
Useful range for choosing the burner

Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

The burner is set for fuel supply from either the right or left hand sides.


Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

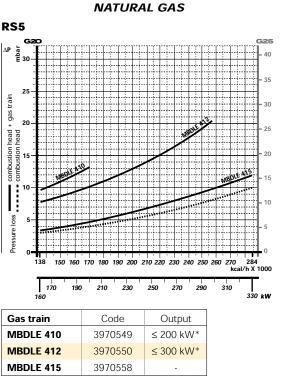
The gas train is Multibloc type, containing the main components in a single unit, and a valve seal control (as accessory) can be fitted.



Gas train installed on the burner

MBDLE 410 - 412 - 415

▼


The dimensions of the gas trains vary depending on their construction features.


The following table shows the maximum dimensions of the gas trains that can be fitted to Gulliver RS5 burner, intake diameter and the coupling flange to the burner.

								_
MULTIBLOC	Name	Code	Øi	Øo	X mm	Y mm	W mm	Zmm
	MBDLE 410	3970549	1" 1/4	FLANGE 3	259	215	47	145
	MBDLE 412	3970550	1" 1/4	FLANGE 3	259	215	47	145
	MBDLE 415	3970558	1" 1/2	FLANGE 3	330	250	47	100

PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the value thus calculated represents the minimum required input pressure to the gas train.

* With natural gas.

note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion

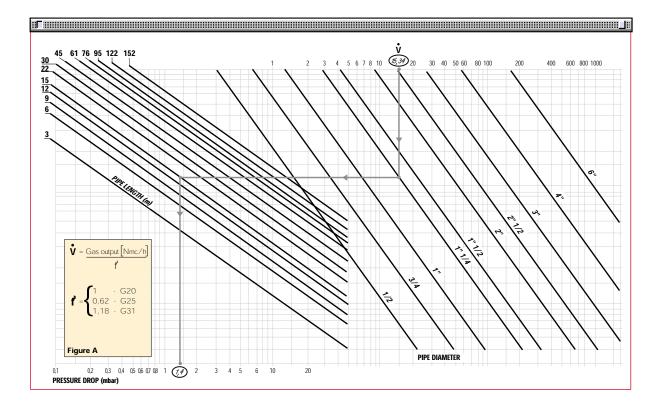
coefficient.

Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25			
-	- gas output	9.51 mc/h			
	- pressure at the gas meter	20 mbar			
	- gas line length	15 m			
	- conversion coefficient	0.62 (see figure A)			
- equivalent methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51\\ \overline{0.62} \end{bmatrix} = 15.34 \text{ mc/h}$					


- once the value of 15.34 has been identified on the output scale ($\check{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;

- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

▼

VENTILATION

The ventilation circuit ensures low noise level with high performance of pressure and air delivery, inspite of their compact size.

The burner is fitted with an adjustable air pressure switch, conforming to EN 676 standards.

Y

Ē

Y

Ē

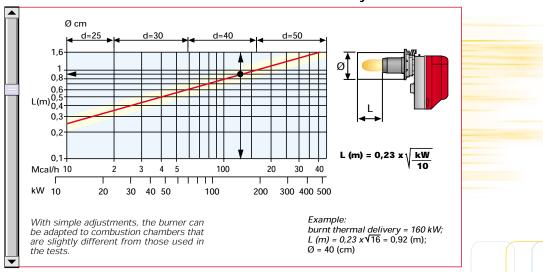
Air suction

Air pressure switch

COMBUSTION HEAD

The combustion head in Gulliver RS5 burner is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all various types of boilers and combustion chambers.

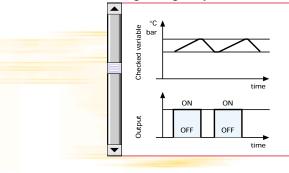
Thanks to the use of a mobile coupling flange, the penetration of the head into the combustion chamber can be adjusted.


Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

Combustion head

Mobile coupling flange

Combustion chamber dimensions used in the test laboratory

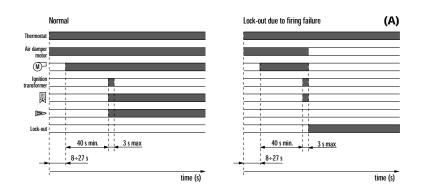


ADJUSTMENT

BURNER OPERATION MODE

This model has single-stage output regulation.

"Single-stage" operation



Y

B

Air damper adjustment

FIRING

(A) Lock-out is shown by a led on the appliance.

Correct operations

OsThe burner begins the firing cycle.0s-8/27sThe motor opens the air damper.8/27s-48/67sPre-purge with the air damper open.48/67sIgnition.

Lock-out due to firing failure

If the flame does not light within the safety limit (~3s) the burner locks-out. When the flame-failure occurs during working, shut down takes place within one second.

ELECTRICAL CONNECTIONS to be made by the installer

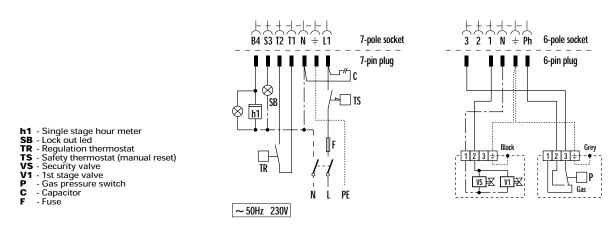
Electrical connections must be made by qualified and skilled personnel, in conformity with the local regulations in force.

The 7-pole socket is incorporated in the control box, the 6pole socket for connection to the gas train is already connected to the equipment and fixed to the outside of the burner.

The 7-pin plug is also supplied for connection to the boiler.

Appliance fitted with an ignition transformer

7-pole socket incorporated in the control box


" SINGLE-STAGE" OPERATIONS

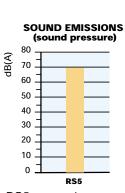
Y

B

Burner electrical wiring

Gas train electrical wiring

The following table shows the supply lead sections and types of fuse to be used.


230V
T6
1

L = Lead section

NO₂ EMISSIONS **CO EMISSIONS** 120 mg/kWh 8 mg/kWh 100 6 80 60 4 40 2 20 0 0 RS5 RS5

Y

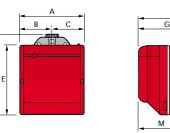
Ē

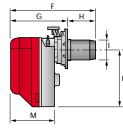
Ŧ

₿

The emission data have been measured in the RS5 at maximum output, in conformity with EN 676 standard.

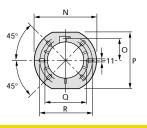
EMISSIONS


Special attention has been paid to noise reduction. This model is fitted with sound-deadening material inside the cover.

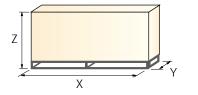


OVERALL DIMENSIONS (mm)

Thanks to certain construction features, this model can be fitted to any boiler on the market.


BURNER

Mod	el	А	В	С	D	Е	F	G	Н	I	L	М
► RS5		300	150	150	392	345	501	278÷301	223÷200	137	286	216


BURNER-BOILER MOUNTING FLANGE

D

Model	Ν	0	Р	Q	R
▶ RS5	218	80,5	203	170	200

PACKAGING

Model	Х	Υ	Z	kg
▶ RS5	590	335	420	18

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

The burner is set in the factory on standard calibration (minimum output), if necessary adjustments can be made on the basis of the maximum output of the boiler.

All operations must be performed as described in the technical handbook supplied with the burner.

The mobile flange allows adapting the length of the combustion head to the combustion chamber (flame inversion or 3 smoke cycles) and to the thickness of the boiler panel.

BURNER SETTINGS

- The air damper position can be adjusted without removing the burner cover.
- Head setting is easy and aided by a graduated scale, a test point allows reading the air pressure in the combustion head.

Gulliver RS5 burner is fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

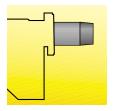
MAINTENANCE

 Maintenance is easily solved because the combustion head can be disassemblied without having to remove the burner and gas train from the boiler.

ACCESSORIES

Y

B


Remote control release kit for the 568 control box

The 568 control box can be remotely released using an electric command kit. This kit must be installed in conformity with current regulations in force.

	Remote control release kit for the 568 control box	
Burner		Code
RS5		3001031

Extended head

Standard head" burners can be transformed into "extended head" versions by using the special kit.

	Combustion hea	d extension kit	
Burner	Standard head length (mm)	Extended head length (mm)	Extended head kit code
RS5	200 ÷ 223	365 ÷ 382	3001016

LPG transformation kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner as shown in the following table.

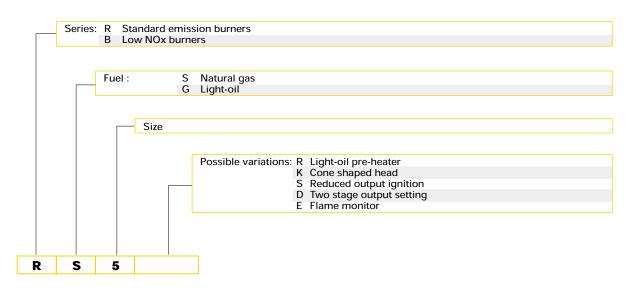
	LPG trasformation kit
Burner	LPG kit code
RS5	3001011

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available.

Seal	control kit
Burner	Kit code
RS5	3010123

SPECIFICATION


A special index guides your choice of boiler according to this model.

Below there is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

T

₿

•	
	AVAILABLE MODEL

RS5 160 ÷ 330 kW

SPECIFICATION DESCRIPTION

Burner

Monoblock, gas burner, completely automatic, with single stage settings fitted with:

- Fan with forward inclined blades
- Cover lined with sound-deadening material
- Air damper, completely closed in stand by, with external adjustment, with no need to remove the cover
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Flame inspection window
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Single stage working valve with ignition gas output regulator.

Burner and gas train assembled

Approval:

- EN 676 standard.

Conforming to:

- Directive 90/396/CEE (gas)
- Directive 73/23/CEE (low voltage)
- Directive 89/336/CEE (electromagnetic compatibility)
- Directive 92/42/CEE (efficiency).

Supplied material:

- Sliding flange
- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- 7-pin plug with capacitor for EMC
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Remote release kit
- Head extension kit
- LPG transformation kit
- Seal control kit.

▼

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

TWO STAGE GAS BURNERS

CE

IES	▶ GAS 3/2	80/130 ÷ 350 kW
	GAS 4/2	120/180 ÷ 470 kW
	 GAS 4/2 GAS 5/2 	155/320 ÷ 660 kW
	▶ GAS 6/2	300/520 ÷ 1050 kW
	▶ GAS 7/2	400/800 ÷ 1760 kW

The GAS/2 series of burners covers a firing range from 80 to 1760 kW and they have been designed for use in civil installations of average dimensions, like building areas and large apartment groups or for use in industrial applications, like small or medium plants. Operation is two stage; the combustion head, that can be set on the basis of required output, allows optimal performance ensuring good combustion and reducing fuel consumption.

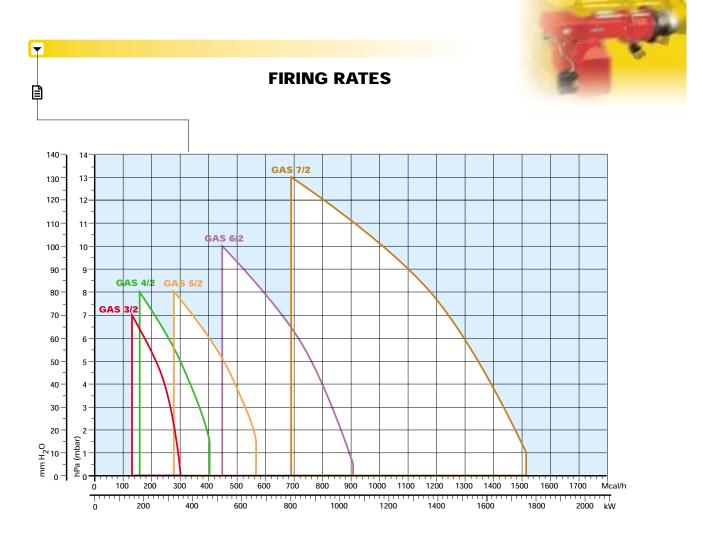
The main feature of these burners is their reliability due to a simple and strong construction, which permits operation without particular maintenance intervention.

Simplified maintenance is achieved by the slide bar system, which allows easy access to all of the essential components of the combustion head. All electrical components are easily accessible only by dismounting a protection panel, thus guaranteeing a quick and simple intervention on components.

III

TECHNICAL DATA

	Model			▼ GAS 3/2	▼ GAS 4/2	▼ GAS 5/2	▼ GAS 6/2	▼ GAS 7/2		
	Burner operat	Burner operation mode			Two stage					
	Modulation rat	tio at max. out	put	2 ÷ 1						
	Servomotor	type				LKS 210				
	Servomotor	run time	s			5				
	Heat output		kW	80/130÷350	120/180÷470	155/320÷660	300/520÷1050	400/800÷1760		
	пеат оптрит		Mcal/h	69/112÷301	104/155÷404	133/275÷568	258/447÷903	344/668÷1514		
	Working temp	erature	°C min./max.			0/40				
	Net calorific v	alue gas G20	kWh/Nm ³	10						
	Density gas G20 kg/Nm ³		kg/Nm ³			0,71				
	Output gas G	20	Nm ³ /h	8/13÷35	12/18÷47	15,5/32÷66	30/52÷105	40/80÷176		
æ	Net calorific value gas G25 kWh/Nm ³				8,6					
dat	Density gas G25 kg/Nm ³				0,78					
÷.	Output gas Ga	25	Nm ³ /h	9/15÷41	14/21÷55	18/37÷77	35/60,5÷122	46,5/93÷205		
Fuel / air data	Net calorific value LPG gas kWh/Nm ³				25,8					
Fue	Density LPG gas kg/Nm ³		2,02							
_	Output LPG gas Nm ³ /h		3/5÷13,5	5/7÷18	6/12÷25,5	11,5/20÷41	15,5/31÷68			
	Fan Type			Centrifugal with forward curve blades						
	Air temperature Max. °C					60				
	Electrical supply Ph/Hz/V		1/50/230)~(±10%)	3N/50/230-40	0~(±10%) 🔶 3/50	/230~(±10%)△			
	Auxiliary electrical supply Ph/Hz/V				1/50/230 ~ (±10%)					
	Control box		Туре			RMG				
	Total electrica	l power	kW	0,4	0,54	0,85	1,7	3,4		
data	Auxiliary elect	trical power	kW	0,15	0,17	0,1	0,2	0,4		
da	Protection lev	el	IP			40				
Electrical	Motor electric	al power	kW	0,25	0,37	0,75	1,5	3		
čt	Rated motor of	urrent	Α	1,8	2,9	2,85-1,65	5,9-3,4	10,9-6,3		
Ē	Motor start up	o current	Α	4,8	9,5	10-6	22,5-13	55-32		
	Motor protect	ion level	IP			54				
	Ignition		V1 - V2	230V - 1x8 kV						
	transformer		l1 - l2			1,8 A - 20 mA				
	Operation				Intermitter	nt (at least one stop	every 24 h)			
'n	Sound pressu	re	dBA	75	78	83	84	87		
Emissions	Sound power		w							
mis	CO Emission		mg/kWh			< 100				
	NOx Emission	n	mg/kWh			< 170				
oval	Directive				73/23 -	89/336 - 90/396 - 92	/42 EEC			
Approval	Conforming to	2				EN 676				
Ā	Certification					CE 0085AQ0707				


Reference conditions:

T

₿

Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

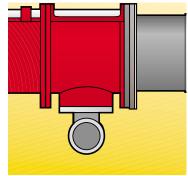
Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

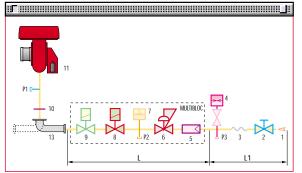
Γ

Useful working field for choosing the burner

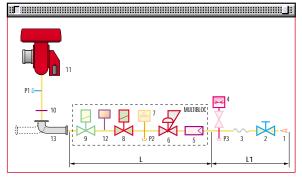
Test conditions conforming to EN 676:

Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

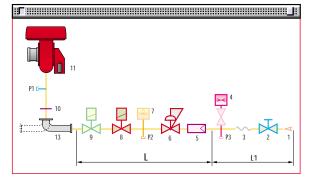



Fuel can be supplied either from the right or left hand sides.

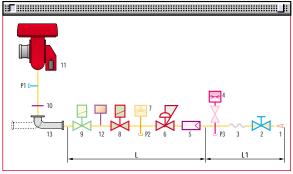
The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line. The gas train can be "Multibloc " type (containing the main components in a single unit) or "Composed" type (assembly of the single components).

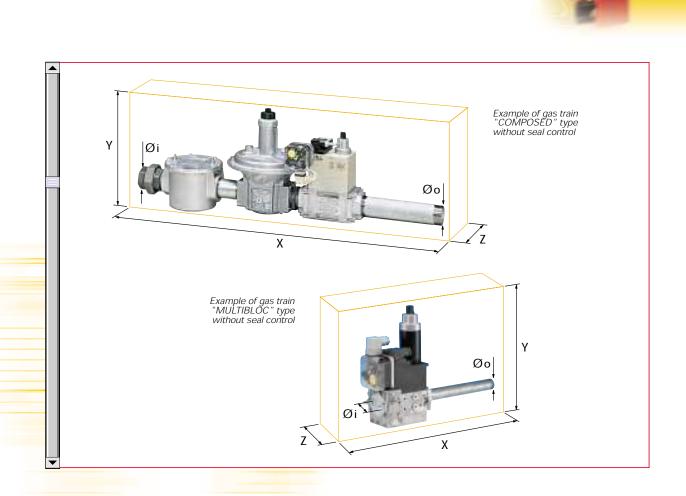


Example of the gas train connection flange of GAS/2 burners.


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control




COMPOSED gas train without seal control

1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Burner
12	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW.
13	Gas train-burner adapter
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

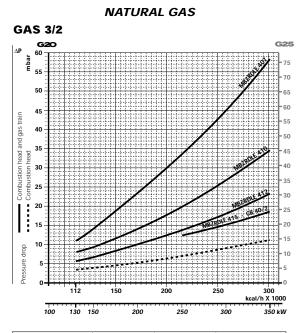
Gas trains are approved by standard EN 676 together with the burner.

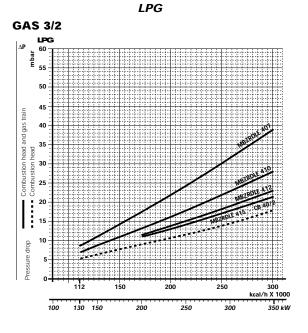
▼

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to GAS/2 burners, intake and outlet diameters and seal control if fitted.

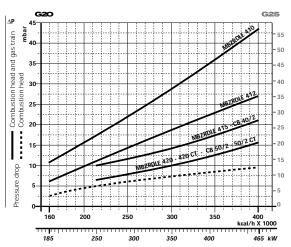
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

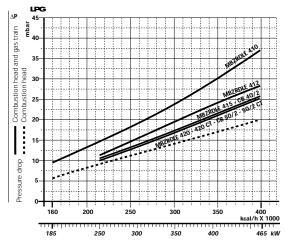

	Name	Code	Øi	Øo	X mm	Y mm	Z mm	Seal Control
MULTIBLOC GAS TRAINS	MBZRDLE 407	3970046	3/4 "	3/4 "	371	256	120	-
	MBZRDLE 410	3970079	1″	3/4 "	405	315	145	-
	MBZRDLE 412	3970152	1″1/4	1″1/2	433	315	145	-
E	MBZRDLE 415	3970183	1″1/2	1″1/2	523	350	100	-
DN P	MBZRDLE 420	3970184	2″	2″	523	410	100	-
	MBZRDLE 420 CT	3970185	2″	2″	523	410	227	Incorporated
	CB 40/2	3970153	1″1/2	1″1/2	1013	345	195	-
OMPOSED GAS TRAINS	CB 50/2	3970154	2″	2″	1150	350	250	-
	CB 50/2 CT	3970166	2″	2″	1150	350	320	Incorporated
	CBF 65/2	3970155	DN 65	DN 65	1166	472	285	-
	CBF 65/2 CT	3970167	DN 65	DN 65	1166	472	390	Incorporated
5	CBF 80/2	3970156	DN 80	DN 80	1246	470	285	-
	CBF 80/2 CT	3970168	DN 80	DN 80	1246	470	387	Incorporated


PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.


The value thus calculated represents the minimum required input pressure to the gas train.

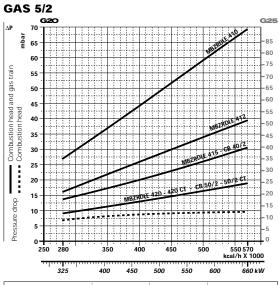
Gas train	Code	Adapter	Seal Control	
MBZRDLE 407	3970046	3000824	Accessory	
MBZRDLE 410	3970079	3000824	Accessory	
MBZRDLE 412	3970152	-	Accessory	
MBZRDLE 415	3970183	-	Accessory	
CB 40/2	3970153	-	Accessory	



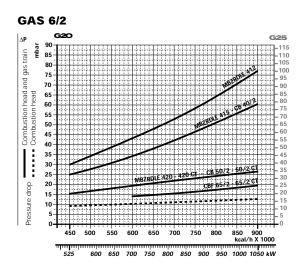
GAS 4/2

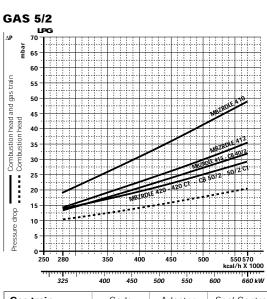
Gas train	Code	Adapter	Seal Control	
MBZRDLE 410	3970079	3000824	Accessory	
MBZRDLE 412	3970152	-	Accessory	
CB 40/2	3970153	-	Accessory	
MBZRDLE 415	3970183	-	Accessory	

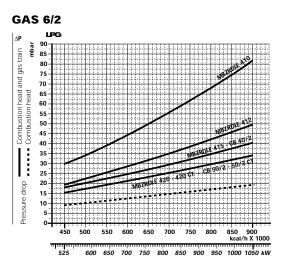
GAS 4/2


Gas train	Code	Adapter	Seal Control	
CB 50/2	3970154	3000822	Accessory	
CB 50/2 CT	3970166	3000822	Incorporated	
MBZRDLE 420	3970184	3000822	Accessory	
MBZRDLE 420 CT	3970185	3000822	Incorporated	

▼




▼


Gas train	Code	Adapter	Seal Control	
MBZRDLE 410	3970079	3000824	Accessory	
MBZRDLE 412	3970152	-	Accessory	
CB 40/2	3970153	-	Accessory	
MBZRDLE 415	3970183	-	Accessory	

Gas train	Code	Adapter	Seal Control	
MBZRDLE 410	3970079	3000824 3000843	Accessory	
MBZRDLE 412	3970152	3000843	Accessory	
CB 40/2	3970153	3000843	Accessory	
MBZRDLE 415	3970183	-	Accessory	
CB 50/2	3970154	-	Accessory	

Gas train	Code	Adapter	Seal Control	
CB 50/2	3970154	3000822	Accessory	
CB 50/2 CT	3970166	3000822	Incorporated	
MBZRDLE 420	3970184	3000822	Accessory	
MBZRDLE 420 CT	3970185	3000822	Incorporated	

Gas train	Code	Adapter	Seal Control	
CB 50/2 CT	3970166	-	Incorporated	
MBZRDLE 420	3970184	3000822	Accessory	
MBZRDLE 420 CT	3970185	3000822	Incorporated	
CBF 65/2	3970155	3000825	Accessory	
CBF 65/2 CT	3970167	3000825	Incorporated	

LPG

NATURAL GAS

▼

LPG

▶ note Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

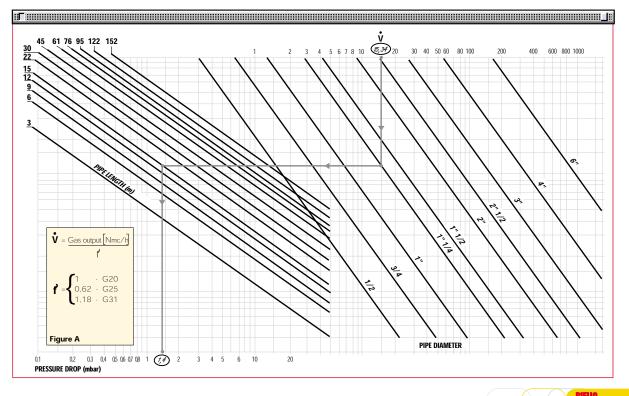
SELECTING THE FUEL SUPPLY LINES

▼

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.


Once the equivalent output has been determined on the delivery scale (\dot{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	- conversion coefficient	0.62 (see figure A)
- equivalent	methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\dot{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

The ventilation circuit of GAS/2 burners is inserted in a extremely compact structure and it is provided with a forward blades centrifugal fan, which guarantees high pressure levels at the required air deliveries

and permits installation flexibility.

A servomotor adjust the air damper in relation to the fuel burnt.

When the burner is not operating the servomotor closes completely the air damper to reduce heat dispersion from the boiler.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

Y

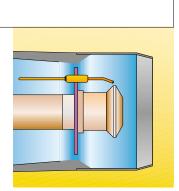
B

B

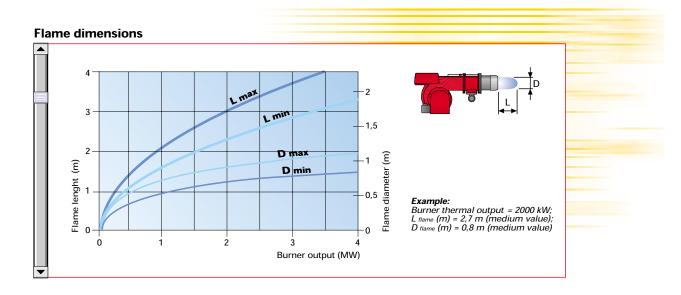
Example of servomotor for air damper adjusting on GAS/2 series of burners

COMBUSTION HEAD

Different combustion head length can be selected for the various models of GAS/2 series of burners.

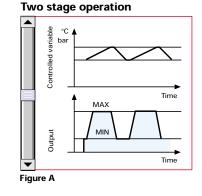

The choice depends on the thickness of the front panel and type of boiler. Correct head

penetration into the combustion chamber depends on the type of heat generator.


These burners are equipped with adjustable combustion head.

This enables optimum combustion performance throughout the working field, ensuring peak combustion efficiency thus saving on fuel consumption.

The following diagram shows the flame dimensions in relation to the burner output. The lengths and diameter shown in the diagram below should be employed for a preliminary check: if combustion chamber dimensions are different from the values in the diagram, further tests need to be done.


Example of a GAS/2 burner combustion head

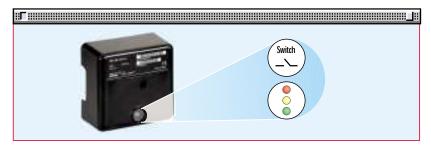
ADJUSTMENT

BURNER OPERATION MODE

On "two stage" operation, the burner gradually adapts the output to the requested level, by varying between two pre-set levels (see figure A).

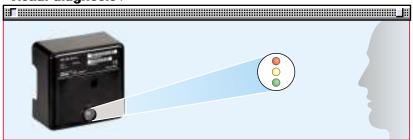
All GAS/2 series burners are fitted with a new microprocessor control panel for the supervision during intermittent operation.

For helping the commissioning and maintenance work, there are two main elements:


▼

B

The lock-out reset button is the central **operating element** for resetting the burner control and for activating / deactivating the diagnostic functions.


The multi-color LED is the central **indication element** for visual diagnosis and interface diagnosis.

Both elements are located under the transparent cover of lock-out reset button, as showed below.

There are two diagnostic choices, for indication of operation and diagnosis of fault cause:

- visual diagnosis :

- interface diagnosis :

by the interface adapter and a PC with dedicated software or by a predisposed flue gas analyzer (see paragraph accessories).

Indication of operation :

In normal operation, the various statues are indicated in the form of colour codes according to the table below.

The interface diagnosis (with adapter) can be activated by pressing the lock-out button for > 3 seconds.

Color code table					
Operation statues	Color code table				
Stand-by	00000000				
Pre-purging	<u> </u>				
Ignition phase	0000000000000000000000000000000000000				
Flame OK	*******				
Poor flame	<u> </u>				
Undervoltage, built-in fuse	<u>****</u>				
Fault, alarm	<u>****</u> ***				
Extraneous light	**** ****				

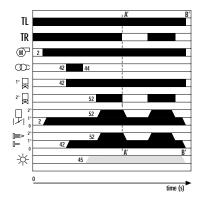
▼

 \bigcirc LED off

Diagnosis of fault causes :

After lock-out has occurred, the red signal lamp is steady on. In this status, the visual fault diagnosis according to the error code table can be activated by pressing the lock-out reset button for > 3 seconds. The interface diagnosis (with adapter) can be activated by pressing again the lock-out button for > 3 seconds.

The blinkers of red LED are a signal with this sequence :


(e.g. signal with n° 3 blinks – faulty air pressure monitor)

Error code table						
Possible cause of fault	Blink code					
No establishment of flame at the end of safety time : - faulty or soiled fuel valves - faulty or soiled flame detector - poor adjustment of burner, no fuel - faulty ignition equipment	**					
Faulty air pressure monitor	**					
Extraneous light or simulation of flame on burner start up	***					
Loss of flame during operation : - faulty or soiled fuel valves - faulty or soiled flame detector - poor adjustment of burner	*****					
Wiring error or internal fault	****					

START UP CYCLE

GAS 3/2 - 4/2 - 5/2 - 6/2 - 7/2

- 0 s The burner begins the firing cycle.
- 2 s The motor starts: pre-purge phase.
- 42 s Ignition electrode sparks; safety valve VS and the 1st stage VR1 of the adjustment valve VR open.
- 45 s Lock out signal is activated if flame is not revealed by the flame detector.
- 52 s Output can be increased by second stage valve VR2 and air damper opening; the start up cycle is concluded.

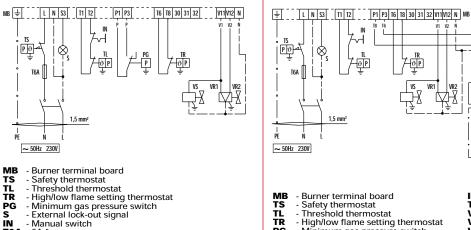
WIRING DIAGRAMS

Electrical connections must be made by gualified and skilled personnel, according to the local regulations.

TWO STAGE OPERATION - Single-phase power supply

GAS 3/2 - 4/2 - without seal control

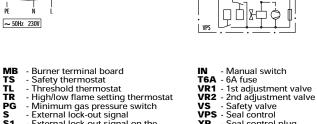
GAS 3/2 - 4/2 - with seal control


TR ⊕P ⊥

X

VR1 VR2

ĘΗ


VS

Ŧ

₿

- **T6A** 6A fuse **VR1** 1st adjustment valve
- VR2 2nd adjustment valve VS Safety valve

PG

IN

θP

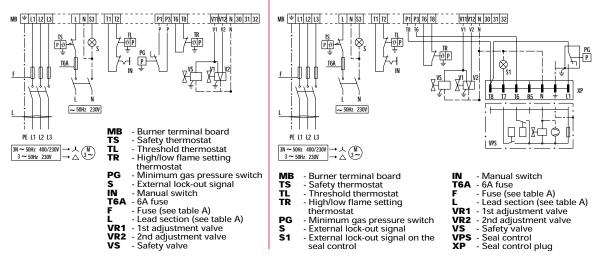
T6A

 \otimes

1.5 mm²

- Minimum gas pressure switch
 External lock-out signal S S1
 - External lock-out signal on the
- - Seal control plug
- seal control

- XP


Ŕ

SI

TWO STAGE OPERATION - Triple-phase power supply

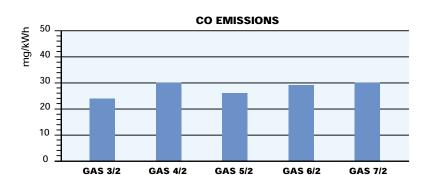
GAS 5/2 - 6/2 - 7/2 - without seal control

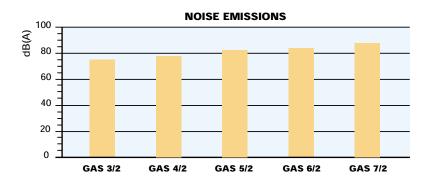
GAS 5/2 - 6/2 - 7/2 - with seal control

The following table shows the supply lead sections and the type of fuse to be used.

м	Model GAS 3/2		▼ GAS 4/2	GAS 4/2 🕶 GAS 5/2		▼GAS 6/2		▼GAS 7/2	
		230V	230V	230V	400V	230V	400V	230V	400V
F	А	Τ6	T6	T6	T6	T16	T10	T25	T16
L	mm ²	1,5	1,5	1,5	1,5	1,5	1,5	2,5	1,5

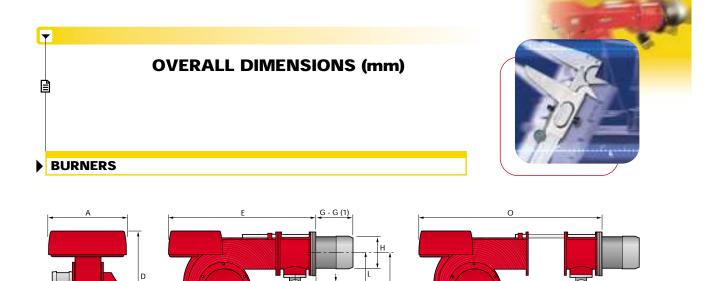
Table A



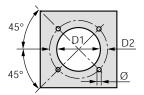


T

₿

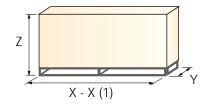

NO2 EMISSIONS

The emission data has been measured in the various models at maximum output, according to EN 676 standard.



Model	А	В	С	D	E	G - G (1)	Н	I	L	М	Ν	0
► GAS 3/2	410	205	205	397	610	185 - 320	140	292	165	1″1/2	97	775
▶ GAS 4/2	410	205	205	397	610	187 - 320	150	292	165	1″1/2	97	775
► GAS 5/2	431	226	205	437	645	207 - 365	155	332	165	1″1/2	97	810
▶ GAS 6/2	463	258	205	485	770	227 - 360	175	370	195	2″	131	966
► GAS 7/2	606	358	248	590	920	240 - 400	220	445	245	2″	140	1142

Ν


(1) Length with extended combustion head

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
▶ GAS 3/2	155	226	M10
▶ GAS 4/2	165	226	M10
▶ GAS 5/2	165	226	M10
▶ GAS 6/2	185	276	M12
▶ GAS 7/2	230	325	M12

PACKAGING

Model	X - X (1)	Y	Z	kg
► GAS 3/2	850	545	473	34
▶ GAS 4/2	850	545	473	40
▶ GAS 5/2	895	543	520	43
▶ GAS 6/2	1045	543	555	60
▶ GAS 7/2	1245	727	665	98

(1) Length with extended combustion head

INSTALLATION DESCRIPTION

T

B

Installation, start up and maintenance must be carried⁻ out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.
- Refit the burner casing to the slide bars.
- Close the burner, sliding it up to the flange.

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.
- Turn the motor to check rotation direction (if it is a three-phase motor).
- Perform a first ignition calibration on the gas train.
- On start up, check:
- Gas pressure at the combustion head (to max. and min. output)
- Combustion quality, in terms of unburned substances and excess air.

BURNER ACCESSORIES

Extended head kit

Ŧ

B

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

Extended head kit				
Burner	Standard head length (mm)	Extended head length (mm)	Kit code	
GAS 3/2	185	320	3000605	
GAS 4/2	187	320	3000606	
GAS 5/2	207	365	3000607	
GAS 6/2	227	360	3000608	
GAS 7/2	240	400	3000678	

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

Spacer kit				
Burner	Spacer thickness S (mm)	Kit code		
GAS 3/2 - 4/2 - 5/2 - 6/2	142	3000755		
GAS 7/2	102	3000722		

Continuous ventilation kit

If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

Continuous ventilation kit	
Burner	Kit code
GAS 3/2 - 4/2 - 5/2 - 6/2 - 7/2	3010030

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

	Sound proofing box	
Burner	Box type	Box code
GAS 3/2 - 4/2 - 5/2	C2	3000777
GAS 6/2	C3	3000778
GAS 7/2	C4	3000779

LPG kit

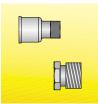
For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:

	LPG kit	
Burner	Kit code for standard head	Kit code for extended head
GAS 3/2	3000657	3000807
GAS 4/2	3000658	3000808
GAS 5/2	3000659	3000809
GAS 6/2	3000753	3000810
GAS 7/2	3000806	3000811

Interface adapter kit

To connect the flame control panel to a personal computer for the transmission of operation, fault signals and detailed service information, an interface adapter with PC software are available.

Interface adapter				
Burner	Kit code			
GAS 3/2 - 4/2 - 5/2 - 6/2 - 7/2	in progress			


GAS TRAIN ACCESSORIES

Adapters

Ŧ

₿

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

Adapters				
Burner	Gas train	Dimensions	Adapter code	
GAS 3/2	MBZRDLE 407 - 410	3/4" 1" 1/2	3000824	
GAS 4/2	MBZRDLE 410	3/4" 1" 1/2	3000824	
6/10 I/L	MBZRDLE 420 - CB 50/2	2" 1" 1/2	3000822	
GAS 5/2	MBZRDLE 410	3/4" 1" 1/2	3000824	
GAS 5/2	MBZRDLE 420 - CB 50/2	2" 1" 1/2	3000822	
	MBZRDLE 410	3/4" 1" 1/2 1" 1/2 1" 2"	3000824 3000843	
GAS 6/2	MBZRDLE 412 - 415 - CB 40/2	1" 1/2 2"	3000843	
	CBF 65/2	DN 65 2"1/2	3000825	
	MBZRDLE 415 - CB 40/2	1" 1/2 2"	3000843	
GAS 7/2	CBF 65/2	DN 65 2"1/2 2" 2" 2"	3000825	
	CBF 80/2	DN 80 2"1/2 2"	3000826	

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The sealing control is type VPS 504.

	Seal control kit				
Burner	Gas train	Kit code			
	MBZRDLE 407 - 410 - 412	3010123			
GAS 3/2	MBZRDLE 415 - CB 40/2	3010125			
GAS 4/2	MBZRDLE 410 - 412	3010123			
	MBZRDLE 415 - 420 - CB 40/2 - 50/2	3010125			
GAS 5/2	MBZRDLE 410 - 412	3010123			
	MBZRDLE 415 - 420 - CB 40/2 - 50/2	3010125			
	MBZRDLE 410 - 412	3010123			
GAS 6/2	MBZRDLE 415 - 420 - CB 40/2 - 50/2 - CBF 65/2	3010125			
0.1.0.7/0	MBZRDLE 415 - 420				
GAS 7/2	CB 40/2 - 50/2 - CBF 65/2 - 80/2	3010125			

Stabiliser spring

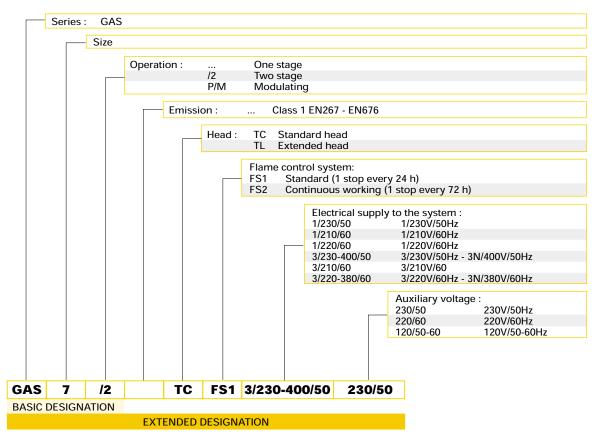
Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range

Stabiliser springs						
Gas train	Spring	Code				
CBF 65/2 - CBF 80/2	Red from 25 to 55 mbar	3010133				
CBF 65/2 - CBF 80/2	Black from 60 to 110 mbar	3010135				
CBF 65/2 - CBF 80/2	Pink from 90 to 150 mbar	3090456				

▼

Please refer to the technical manual for the correct choice of spring.

SPECIFICATION



A specific index guides your choice of burner from the various models available in the RS series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

T

B

A\/A11	AVAILABLE BUDNED MODELS									
AVAILABLE BURNER MODELS										
GAS 3/2	тс	FS1	1/210/60	120/50-60	GAS 6/2	тс	FS1	3/210/60	120/50-60	
GAS 3/2	ŤČ	FS1	1/220/60	220/60	GAS 6/2	TC	FS1	3/220-380/60	220/60	
GAS 3/2	ŤČ	FS1	1/230/50	230/50	GAS 6/2	ŤČ	FS1	3/230-400/50	230/50	
043 3/2	10	131	1/230/30	230/30	043 0/2	10	131	3/230-400/30	230/30	
GAS 4/2	тс	FS1	1/230/50	230/50	GAS 7/2	тс	FS1	3/210/60	120/50-60	
GAS 4/2	TC	FS1	1/210/60	120/50-60	GAS 7/2	TC	FS1	3/220-380/60	220/60	
GAS 4/2	ŤČ	FS1	3/220-380/60	220/60	GAS 7/2	ŤČ	FS1	3/230-400/50	230/50	
0/10 1/2		101	0,220 000,00	220,00	0/10/1/2	10	101	0/200 100/00	200/00	
GAS 5/2	тс	FS1	3/210/60	120/50-60						
GAS 5/2	ŤĊ	FS1	3/220-380/60	220/60						
GAS 5/2	ŤČ	FS1	3/230-400/50	230/50	Other ve	rsior	ns are	available on	request.	
0,10 0/2	.0		0,200 100,00	200,00						
									-	

PRODUCT SPECIFICATION

Burner:

Monoblock forced draught gas burner with two stage operation, fully automatic, made up of: - Air suction circuit

•

- Fan with forward curve blades high performance concerning pressure and air delivery
- Air damper for air setting controlled by servomotor
- Fan pressure test point
- Starting motor at 2800 rpm
- Combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
- Microprocessor-based flame control panel with diagnostic functions
- Terminal strip for electrical connections
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 44 electric protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 40 until a diameter of DN 80), fitted with: - Filter

- Filter
- StabiliserMinimum gas pressure switch
- Safety valve
- Two stage working valve with ignition gas output regulator.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Extended head kit
- Spacer kit
- Continuous ventilation kit
- Sound-proofing box
- LPG kit
- Gas train adapter
- Seal control kit
- Stabiliser spring
- Interface adapter kit.

RIELLO

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980 Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

MODULATING GAS BURNERS ► GAS P/M SERI

CE

IES	▶ GAS	3 P/M	80/130 ÷ 350 kW
	▶ GAS	4 P/M	120/180 ÷ 470 kW
	► GAS	5 P/M	155/320÷ 660 kW
	►GAS	6 P/M	300/520 ÷ 1050 kW
	▶ GAS	7 P/M	400/800 ÷ 1760 kW
	▶ GAS	8 P/M	640/1162 ÷ 2210 kW
	▶ GAS	9 P/M	870/1744 ÷ 3488 kW
	GAS	10 P/M	1140/2441 ÷ 4885 kW

The GAS P/M series cover a firing range from 80 to 4885 kW.

Operation is featured by progressive two stage operation or full modulation, with an advanced modulating control system and probes.

The burners of GAS P/M series are well suited for applications requiring versatility of control (process, steam, refrigerating absorption) where a variable output is needed. Due to their metal sheet structures, they are specifically suitable for process applications where plastic materials could be easily damaged or deformed. Simplified maintenance is achieved by sliding bars which permit the access to the combustion head without need of removing the burner from the boiler.

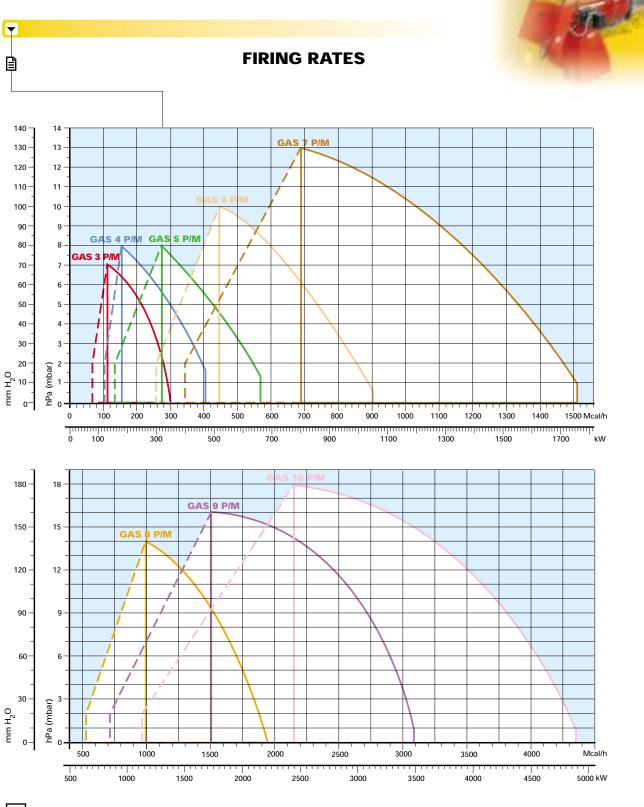
b

Πr

TECHNICAL DATA

Model			▼ GAS 3 P/M	▼ GAS 4 P/M	▼ GAS 5 P/M	GAS 6 P/M	▼GAS 7 P/M	GAS 8 P/M	▼GAS 9 P/M	▼ GAS 10 P/N		
Burner	operation mo	de		Mod	ulating (with rec	ulator and probe	s accessories) or	Two stage progr	essive			
Modulation ratio at max. output				Modulating (with regulator and probes accessories) or Two stage progressive 4 + 1								
Servo-	Туре		SOM 10									
motor	Run time	s					42					
Heat output		kW	80/130÷350									
	ıtput	Mcal/h	69/112÷301	104/155÷404	133/275÷568	258/447÷903	344/688÷1514	550/1000÷1900	750/1500÷3000	980/2100÷420		
Working	g temperature	°C min./max.	0/40									
	ific value G20 gas	kWh/Nm ³					10					
	s density	kg/Nm ³	0.71									
G20 gas	s delivery	Nm ³ /h	8/13÷35	12/18÷47	15,5/32÷66	30/52÷105	40/80÷176	64/116,3÷221	87/174,4÷348,8	114/244,1÷488		
Net calori	ific value G25 gas	kWh/Nm ³	8,6									
	s density	kg/Nm ³	0,78									
G25 gas	s delivery	Nm ³ /h	9,3/15,1÷40,7	13,9/20,9÷54,6	18/37,2÷76,7	34,8/60,4÷122	46,5/92,9÷204,4	74,3/135÷256,7	101,1/202,6+405,1	132,4/283,5÷56		
Net calori	fic value LPG gas	kWh/Nm ³	29,2									
LPG gas	s density	kg/Nm ³				2	,16					
LPG gas	s delivery	Nm ³ /h	2,7/4,5÷12	4,1/6,2÷16,1	5,3/11÷22,6	10,3/17,8÷36	13,7/27,4÷60,3	21,9/39,9÷75,8	29,8/59,8÷119,6	39,1/83,7÷167		
Fan		type		Centrifugal with forward curve blades								
Air tem	perature	max. °C					60					
Electric	al supply	Ph/Hz/V	1/50/23	1/50/230 (±10%) 3N/50/400-230 (±10%)								
Auxiliary	electrical supply	Ph/Hz/V				1/50/23	80 (±10%)					
Control	box	type	LANDIS LFL 1.333									
Total ele	ectrical power	kW	0,4	0,54	0,85	1,7	3,4	5	9	14		
Auxiliary	electrical power	kW	0,15	0,17	0,1	0,2	0,4	1	1,5	2		
Protecti	ion level	IP					40	J				
Motor el	lectrical power	kW	0,25	0,37	0,75	1,5	3	4	7,5	12		
Rated n	notor current	Α	1,8	2,9	2,85 - 1,65	5,9 - 3,4	8 - 13,5	9,5 - 16,4	17,5 - 30	26 - 45		
Motor st	tart up current	Α	4,8	9,5	10 - 6	22,5 - 13	51 - 86	48 - 83	113 - 195	151 - 261		
Motor p	rotection level	IP	44 55									
		type										
Ignition transfor		V1 - V2				230V	- 1x8 kV					
		l1 - l2				1,8A	- 30 mA					
Operati	on			Intermit	ent (at least one	stop every 24 h)	- Continuous (a	t least one stop e	every 72 h)			
Sound	pressure	dB(A)	74,6	78	83,8	83,7	84,8	85,9	89,4	90		
Sound	output	w										
CO emi	ssion	mg/kWh				<	60					
NOx er	mission	mg/kWh				<	120					
Directiv	re					90/396 - 89/336 -	73/23 - 92/42 EE	c				
Conform	ning to					EN	676					
Certifica	ation		CE 0085AQ0710 CE 0085AP0941 CE 0085AP0942 CE 0085AP09						CE 0085AP09			

Reference conditions:


Ŧ

Ê

Temperature: 20°C Pressure: 1013,5 mbar Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall

This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful working field for choosing the burner

Modulation range

Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

RIELO

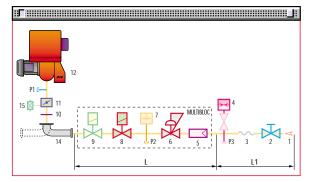
FUEL SUPPLY

GAS TRAIN

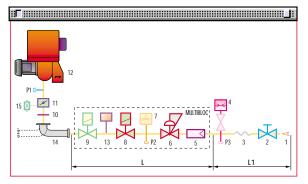
The burners are fitted with a butterfly valve to regulate the fuel, controlled by a variable profile cam servomotor. Fuel can be supplied either

from the right or left hand sides, on the basis of the application requirments. A maximum gas pressure switch stops the burner in case of an excess of pressure in fuel line.

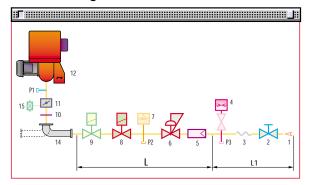
The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line. The gas train can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).



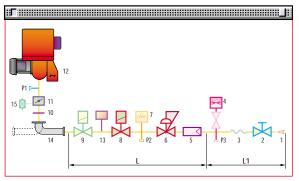
Y

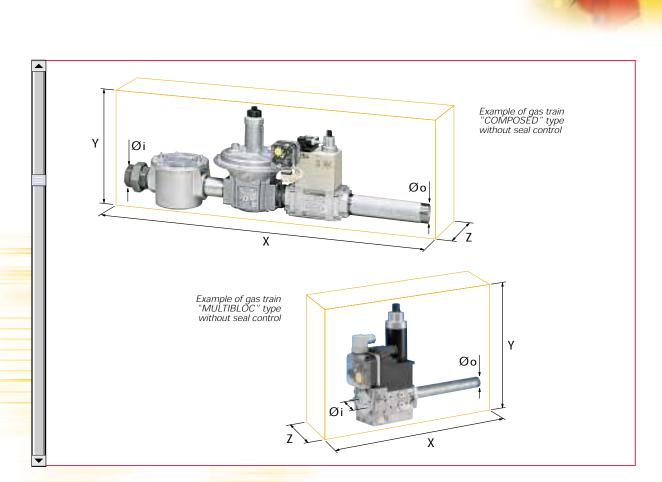

B

Example of the variable profile cam on GAS 3-4-5-6-7 P/M burners.


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control




COMPOSED gas train without seal control

1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock.
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Gas adjustment butterfly valve
12	Burner
13	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW.
14	Gas train-burner adapter.
15	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer' s responsibility

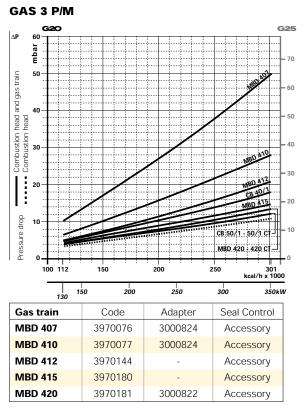
COMPOSED gas train with seal control

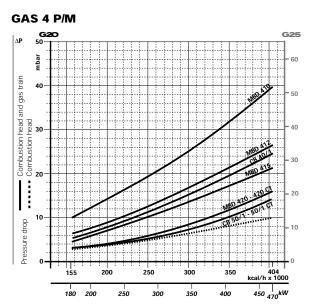
Gas trains are approved by standard EN 676 together with the burner.

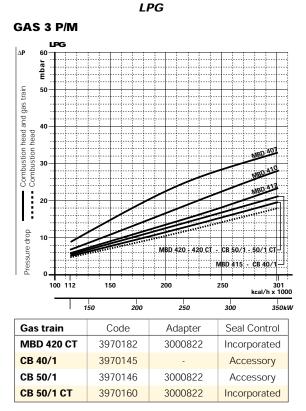
▼

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to GAS P/M burners, intake and outlet diameters and seal control if fitted.

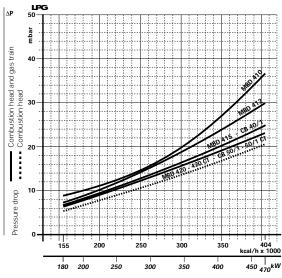
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.


The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.


	Name	Code	Øi	Øo	X mm	Y mm	Z mm	Seal Control
	MBD 407	3970076	3/4 "	3/4 "	371	196	120	-
PSC PSC	MBD 410	3970077	1″	3/4 "	405	217	145	-
BLO	MBD 412	3970144	1″1/4	1″1/2	433	217	145	-
E	MBD 415	3970180	1″1/2	1″1/2	523	250	100	-
MULTIBLOC GAS TRAINS	MBD 420	3970181	2″	2″	523	300	100	-
E	MBD 420 CT	3970182	2″	2″	523	300	227	Incorporated
	CB 40/1	3970145	1″1/2	1″1/2	891	261	195	-
	CB 50/1	3970146	2″	2″	986	328	250	-
۵.,	CB 50/1 CT	3970160	2″	2″	986	328	320	Incorporated
SE	CBF 65/1	3970147	DN 65	DN 65	874	356	285	-
COMPOSED GAS TRAINS	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	Incorporated
N S S	CBF 80/1	3970148	DN 80	DN 80	934	416	285	-
5°	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	Incorporated
	CBF 100/1	3970149	DN 100	DN 100	1054	501	350	-
	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	Incorporated

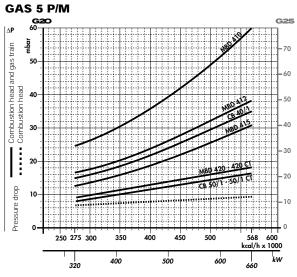

PRESSURE DROP DIAGRAM

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; the value thus calculated represents the minimum required input pressure to the gas train.

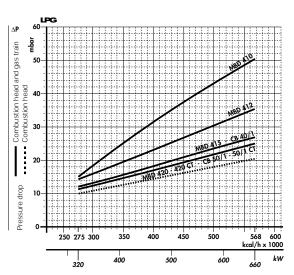


Gas train	Code	Adapter	Seal Control
MBD 410	3970077	3000824	Accessory
MBD 412	3970144	-	Accessory
MBD 415	3970180	-	Accessory
MBD 420	3970181	3000822	Accessory

T

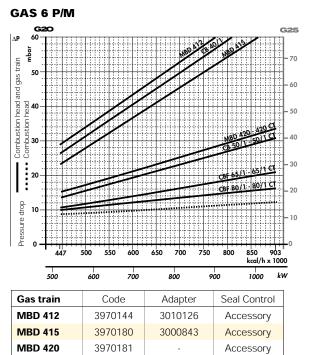

Gas train	Code	Adapter	Seal Control
MBD 420 CT	3970182	3000822	Incorporated
CB 40/1	3970145	-	Accessory
CB 50/1	3970146	3000822	Accessory
CB 50/1 CT	3970160	3000822	Incorporated

NATURAL GAS



NATURAL GAS

-



Gas train	Code	Adapter	Seal Control
MBD 410	3970077	3000824	Accessory
MBD 412	3970144	-	Accessory
MBD 415	3970180	-	Accessory
MBD 420	3970181	3000822	Accessory

LPG

Gas train	Code	Adapter	Seal Control
MBD 420 CT	3970182	3000822	Incorporated
CB 40/1	3970145	-	Accessory
CB 50/1	3970146	3000822	Accessory
CB 50/1 CT	3970160	3000822	Incorporated

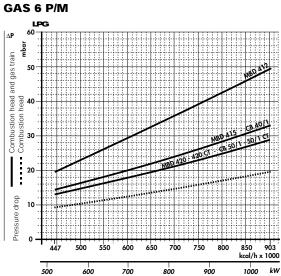
3000843

Incorporated

Accessory

Accessory

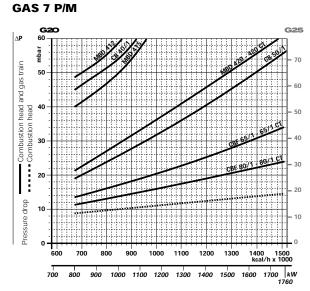
MBD 420 CT


CB 40/1

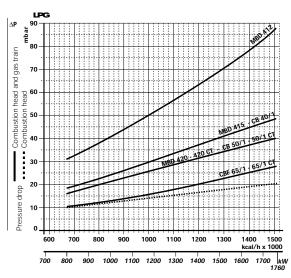
CB 50/1

3970182

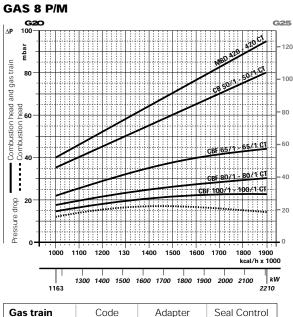
3970145


3970146

Gas train	Code	Adapter	Seal Control
CB 50/1 CT	3970160	-	Incorporated
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3971062	3000826	Incorporated

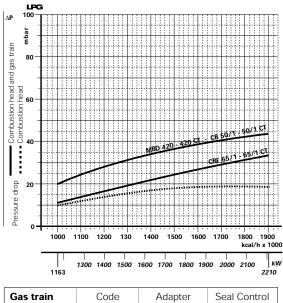


NATURAL GAS



Gas train	Code	Adapter	Seal Control
MBD 412	3970144	3010126	Accessory
MBD 415	3970180	3000843	Accessory
MBD 420	3970181	-	Accessory
MBD 420 CT	3970182	-	Incorporated
CB 40/1	3970145	3000843	Accessory
CB 50/1	3970146	-	Accessory

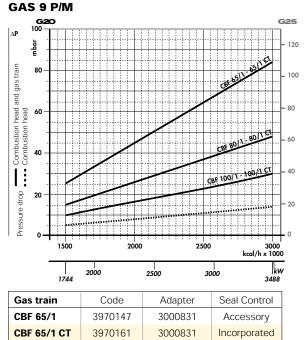
LPG


Gas train	Code	Adapter	Seal Control
CB 50/1 CT	3970160	-	Incorporated
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3971062	3000826	Incorporated

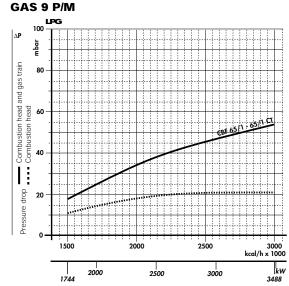
Ous train	Couc	ridupter	Scar Control
MBD 420	3970181	3010128	Accessory
MBD 420 CT	3970182	3010128	Incorporated
CB 50/1	3970146	3010128	Accessory
CB 50/1 CT	3970160	3010128	Incorporated
CBF 65/1	3970147	3000831	Accessory

GAS 8 P/M

GAS 7 P/M

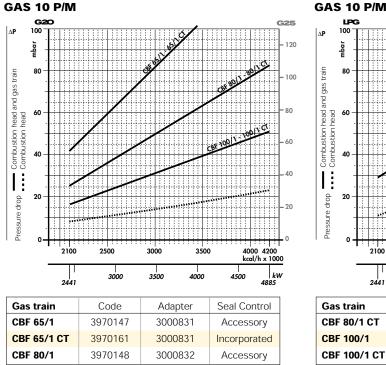

Gastian	Coue	Adapter	Sear Control
CBF 65/1 CT	3970161	3000831	Incorporated
CBF 80/1	3970148	3000832	Accessory
CBF 80/1 CT	3971062	3000832	Incorporated
CBF 100/1	3970149	3010127	Accessory
CBF 100/1 CT	3970163	3010127	Incorporated

▼

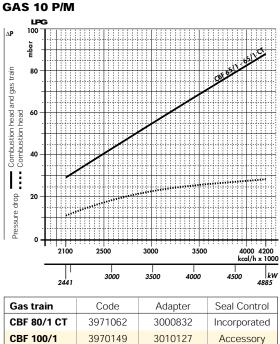


NATURAL GAS

▼



3970148


LPG

Gas train	Code	Adapter	Seal Control
CBF 80/1 CT	3971062	3000832	Incorporated
CBF 100/1	3970149	3010127	Accessory
CBF 100/1 CT	3970163	3010127	Incorporated

3000832

Accessory

3970163

3010127

note

CBF 80/1

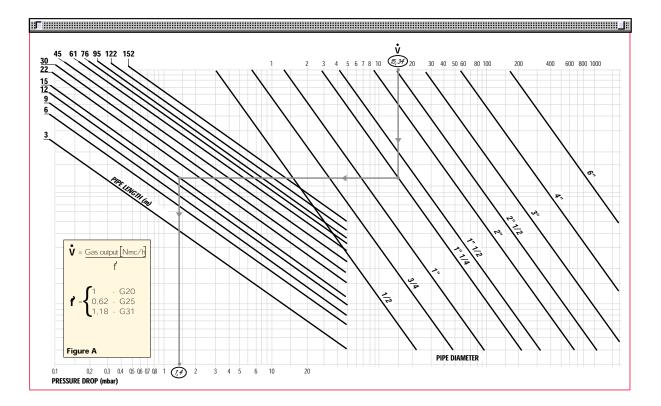
Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

Incorporated

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.


Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale ($\dot{\mathbf{v}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example: - gas used G25 - gas output 9.51 mc/h - pressure at the gas meter 20 mbar - gas line length 15 m - conversion coefficient 0.62 (see figure A) - equivalent methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix} = 15.34$ mc/h

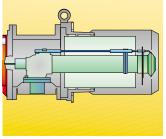
- once the value of 15.34 has been identified on the output scale ($\check{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

The ventilation circuit comes with a forward blades centrifugal fan, which gaurantees high pressure levels at the required air deliveries and permits installation flexibility.

Ē

Example of servomotor and air damper of GAS 3 P/M


In spite of the remarkable output power and of the very high pressure performances, GAS P/M models are extremely compact.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

A variable profile cam connects fuel and air setting, ensuring fuel efficiency at all firing rates.

These burners are equipped with a variable geometry combustion head. This enables optimum combustion performance throughout the working field, ensuring peak combustion efficiency thus saving on fuel consumption. The following diagram shows the flame dimensions in relation to the burner output. The lengths and diameter shown in the diagram below should be employed for for a preliminary check: if combustion chamber dimensions are different from the values in the diagram, further tests

COMBUSTION HEAD E Two different combustion head length can be selected for the various models of GAS P/M series of burners. The choice depends on the thickness of the front panel and type of boiler. Correct head penetration into the combustion chamber depends on the type of heat generator.

Example of GAS 8 P/M combustion head

Flame dimensions 7 3.5 6 3 5 Ξ Ē 2.5 diameter Flame length 2 3 Flame (D max 1,5 2 1 0,5 Example: 0 0 4 5 6 9 10 0 2 3 7 8 Burner output (MW)

need to be done.

‡D

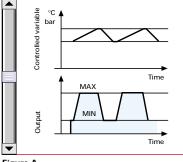
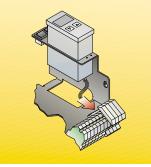
Burner thermal output = 3500 kW; L fiame (m) = 3,5 m (medium value); D fiame (m) = 1 m (medium value)

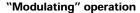
ADJUSTMENT

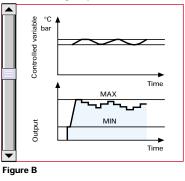
BURNER OPERATION MODE

During "two stage progressive" operation, the burner gradually adapts the output to the requested level, by varying between two pre-set levels (see figure A).

"Two stage progressive" operation

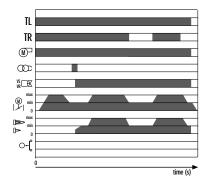




Figure A



The GAS P/M series of burners can be "two stage progressive" or "modulating" operation.

Example of RWF 40 regulator


During "modulating" operation, normally required in steam generators, in superheated boilers or thermal oil burners, a specific regulator and probes are required. These are supplied as accessories that must be ordered separately. The burner can work for long periods at intermediate output levels (see figure B).

START UP CYCLE

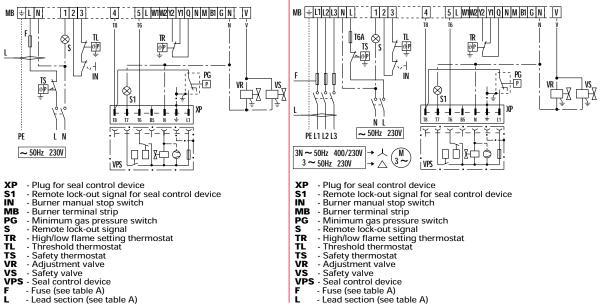
GAS 3 P/M - 4 P/M - 5 P/M - 6 P/M - 7 P/M - 8 P/M - 9 P/M - 10 P/M

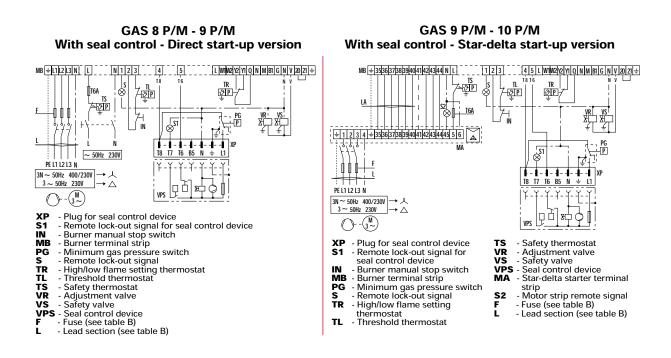
- 0" The burner begins the firing cycle. Load control TL closes and motor starts running.
 6" 51" The servomotor opens the air damper at the maximum output.
 51"- 82" Pre-purge phase with air delivery at maximum output.
 82" 117" The servomotor sets the air damper and the butterfly valve at the minimum output.
- 117" 120" Pre-ignition.
- 126" Firing : all the solenoid gas valves are supplied.
- 126" 129" After ignition.
- 150" Output can be increased.

T

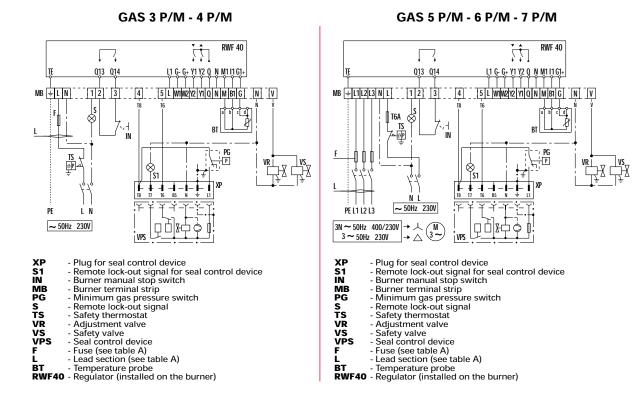
B

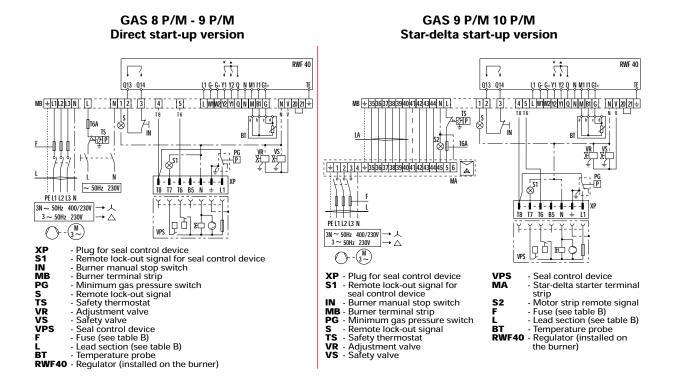
WIRING DIAGRAMS


▼


Ē

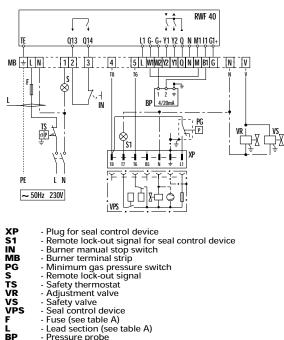
Electrical connections must be made by qualified and skilled personnel, according to the local regulations.

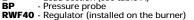

"TWO STAGE PROGRESSIVE" OPERATION GAS 3 P/M - 4 P/M GAS 5 P/M - 6 P/M - 7 P/M Without seal control Without seal control MB÷LN 123 45LW1W2Y2Y1QNMB1GN V MB ± L1L2L3 N L 123 4 5 L W1W2Y2 Y1 Q N M B1 G N V Pf TS Р θP ϑP TS ØP-FA CFA VR I NL - Burner manual stop switch - Burner terminal strip - Minimum gas pressure switch - Remote lock-out signal - High/low flame setting thermostat Throshold thormostat - Burner manual stop switch - Burner terminal strip - Minimum gas pressure switch - Remote lock-out signal - High/low flame setting thermostat IN MB PG S TR ∼ 50Hz 230V IN PE LN PE L1 L2 L3 MB ∼ 50Hz 230V PG 3N~50Hz 400/230V →人 $(\overset{\mathsf{M}}{\mathbf{3}}$ S TR 3 ~ 50Hz 230V →△ TL TS Threshold thermostat Safety thermostat TL TS Threshold thermostat Safety thermostat - Adjustment valve - Safety valve - Fuse (see table A) - Lead section (see table A) - Adjustment valve - Safety valve - Fuse (see table A) - Lead section (see table A) VR VR VS F VS F L GAS 3 P/M - 4 P/M GAS 5 P/M - 6 P/M - 7 P/M With seal control With seal control



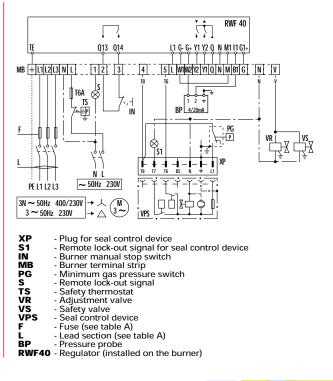
-

MODULATING OPERATION - temperature probe

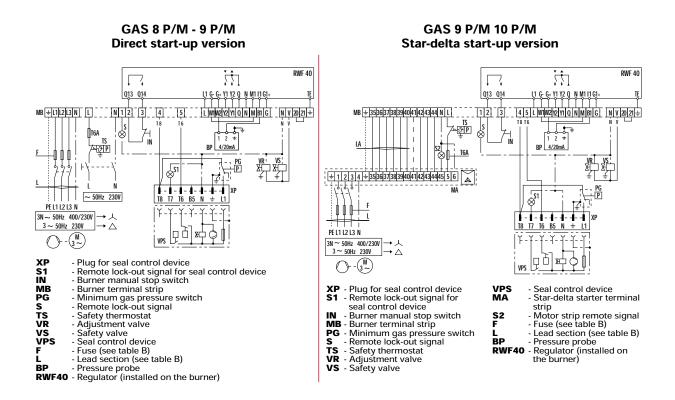




MODULATING" OPERATION - pressure probe



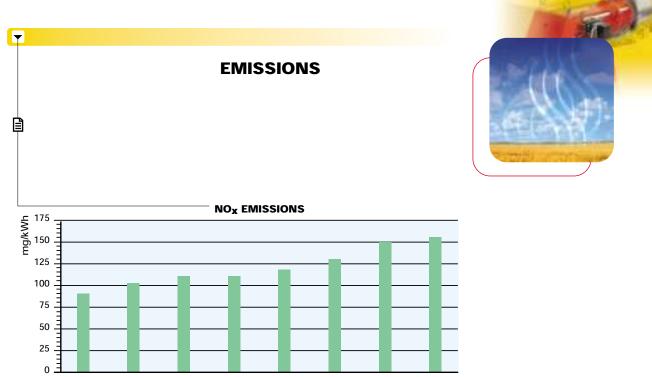
-



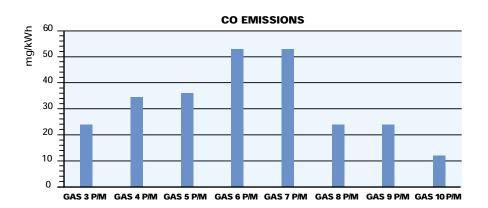
GAS 5 P/M - 6 P/M - 7 P/M

RIELO BURNERS

-


The following table shows the supply lead sections and the type of fuse to be used.

_	Single phase				Three	phase - I	Direct sta	rt-up	
Mo	odel	▼GAS 3 P/M	▼GAS 4 P/M	▼GAS	5 P/M	▼ GAS	6 P/M	▼ GAS	5 7 P/M
				230V	400V	230V	400V	230V	400V
F	А	T5	Τ6	T6	T6	T16	T10	T25	T16
L	mm ²	1,5	1,5	1,5	1,5	1,5	1,5	2,5	1,5


Table A

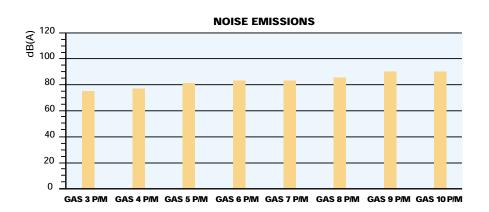
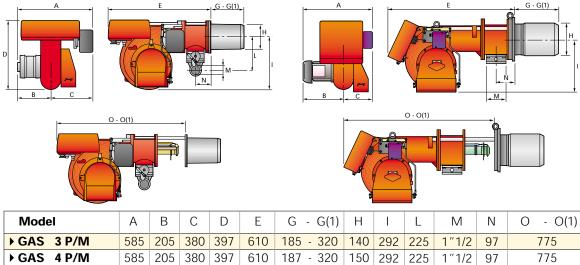
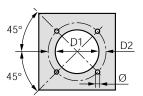

Three phase - Direct start-up					Three phase - Star-delta start-up				
Мо	del	▼GAS	8 P/M	▼GAS	5 9 P/M	▼ GAS	5 9 P/M	▼ GAS	10 P/M
		230V	400V	230V	400V	230V	400V	230V	400V
F	А	T35	T25	T50	T35	T35	T25	T63	T35
L	mm ²	4	2,5	6	4	4	2,5	6	4

Table B

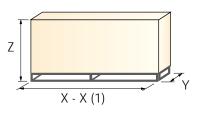
GAS 3 P/M GAS 4 P/M GAS 5 P/M GAS 6 P/M GAS 7 P/M GAS 8 P/M GAS 9 P/M GAS 10 P/M


The emission data has been measured in the various models at maximum output, according to EN 676 standard.

GAS 3 P/M - 4 P/M - 5 P/M - 6 P/M - 7 P/M


GAS 8 P/M - 9 P/M - 10 P/M

											,=	0.	
► GAS	4 P/M	585	205	380	397	610	187 - 320	150	292	225	1″1/2	97	775
► GAS	5 P/M	581	226	355	437	645	207 - 365	155	332	225	1″1/2	97	810
Image: GAS	6 P/M	628	258	370	485	770	227 - 360	175	370	250	2″	131	966
► GAS	7 P/M	758	358	400	590	920	240 - 400	220	445	305	2″	140	1142
▶ GAS	8 P/M	755	396	359	-	1090	391 - 501	260	467	-	DN 80	158	1541 - 1644
Image: GAS	9 P/M	817	447	370	-	1200	444 - 574	295	496	-	DN 80	168	1627 - 1757
► GAS '	10 P/M	917	508	409	-	1320	476 - 606	336	525	-	DN 80	203	1730 - 1860


(1) Length with extended combustion head

BURNER - BOILER MOUNTING FLANGE

[
Model	D1	D2	Ø
GAS 3 P/M	155	226	M10
► GAS 4 P/M	165	226	M10
► GAS 5 P/M	165	226	M10
►GAS 6 P/M	185	276	M12
► GAS 7 P/M	230	325	M12
GAS 8 P/M	265	368	M16
► GAS 9 P/M	300	368	M18
► GAS 10 P/M	350	438	M20

PACKAGING

r				
Model	X - X (1)	Y	Z	kg
► GAS 3 P/M	930	705	555	37
►GAS 4 P/M	930	705	555	43
►GAS 5 P/M	930	705	555	46
►GAS 6 P/M	1045	705	555	63
►GAS 7 P/M	1203	865	665	101
►GAS 8 P/M	1690	820	880	195
►GAS 9 P/M	1870	920	910	240
▶ GAS 10 P/M	2040	1101	930	290

(1) dimension with extended head

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

B

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.
- Refit the burner casing to the slide bars.
- Close the burner, sliding it up to the flange.

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.
- Turn the motor to check rotation direction (if it is a three-phase motor).
- Perform a first ignition calibration on the gas train.
- On start up, check:
 - Gas pressure at the combustion head (to max. and min. output)
 - Combustion quality, in terms of unburned substances and excess air.

BURNER ACCESSORIES

Y

₿

Extended head kit

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

Extended head kit						
Burner	Standard head length (mm)	Extended head length (mm)	Kit code			
GAS 3 P/M	185	320	3000605			
GAS 4 P/M	187	320	3000606			
GAS 5 P/M	207	365	3000607			
GAS 6 P/M	227	360	3000608			
GAS 7 P/M	240	400	3000609			

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

Spacer kit				
Burner	Spacer thickness S (mm)	Kit code		
GAS 3 - 4 - 5 - 6 P/M	142	3000755		
GAS 7 - 8 P/M	102	3000722		
GAS 9 P/M	130	3000723		
GAS 10 P/M	130	3000751		

Continuous ventilation kit

If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

Continuous ventilation kit				
Burner	Kit code			
GAS 3 - 4 - 5 - 6 - 7 P/M	3010030			

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

Sound proofing box					
Burner	Box type	Box code			
GAS 3 - 4 - 5 P/M	C2	3000777			
GAS 6 P/M	C3	3000778			
GAS 7 P/M	C4	3000779			
GAS 8 P/M	C5	3000780			
GAS 9 - 10 P/M	C6	3000781			

Accessories for modulating operation

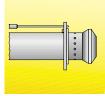
To obtain modulating operation, the GAS P/M series of burners requires a regulator with three point outlet controls. The following table lists the accessories for modulating operation with their application range.

▼

Burner	Regulator type	Regulator code
GAS 3 - 4 - 5 - 6 - 7 P/M	RWF 40	3010210
GAS 8 - 9 - 10 P/M	RWF 40	3010211

The relative temperature or pressure probes fitted to the regulator must be chosen on the basis of the application.

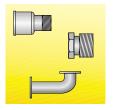
Probe type	Range (°C) (bar)	Probe code
Temperature PT 100	-100 ÷ 500°C	3010110
Pressure 4 ÷ 20 mA	0 ÷ 2,5 bar	3010213
Pressure 4 ÷ 20 mA	0 ÷ 16 bar	3010214


Depending on the servomotor fitted to the burner, a three-pole potentiometer (1000 Ω) can be installed to check the position of the servomotor. The KITS available for the various burners are listed below.

Burner	Kit code
GAS 3 - 4 - 5 - 6 - 7 - 8 - 9 -10 P/M	3010021

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:


	LPG kit	
Burner	Kit code for standard head	Kit code for extended head
GAS 3 P/M	3000657	3000807
GAS 4 P/M	3000658	3000808
GAS 5 P/M	3000659	3000809
GAS 6 P/M	3000753	3000810
GAS 7 P/M	3000806	3000811
GAS 8 P/M	3000875	3010029
GAS 9 P/M	3000876	3010028
GAS 10 P/M	3010152	3010153

GAS TRAIN ACCESSORIES

Adapters

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

Adapters							
Burner	Gas train	Dimensions	Adapter code				
GAS 3 P/M	MBD 407 - 410	3/4" 1" 1/2	3000824				
GAS 5 F/IVI	MBD 420 - CB 50/1	2" 1" 1/2	3000822				
	MBD 410	3/4" 1" 1/2	3000824				
GAS 4 - 5 P/M	MBD 420 - CB 50/1	2" 1" 1/2	3000822				
	MBD 412 - 415 - CB 40/1	1" 1/2 2"	3000843				
GAS 6 - 7 P/M	CB 65	DN 65 2"1/2 2" 2" 2"	3000825				
	CB 80	DN 80 2"1/2 2"	3000826				
	MBD 420 - CB 50/1	DN 80 DN 65 2"1/2 2"	3010128				
	CB 65	DN 65	3000831				
GAS 8 P/M	CB 80	DN 80	3000832				
	CB 100	DN 100	3010127				
	CB 65	DN 65	3000831				
GAS 9 -10 P/M	CB 80	DN 80	3000832				
	CB 100	DN 100	3010127				

T

B

Seal control kit

▼

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The sealing control is type VPS 504.

Seal control kit						
Burner	Gas train	Kit code				
	MBD 407 - 410 - 412	3010123				
GAS 3 P/M	MBD 415 - 420 - CB 40/1 - 50/1	3010125				
	MBD 410 - 412	3010123				
GAS 4 P/M	MBD 415 - 420 - CB 40/1 - 50/1	3010125				
	MBD 410 - 412	3010123				
GAS 5 P/M	MBD 415 - 420 - CB 40/1 - 50/1	3010125				
	MBD 412	3010123				
GAS 6 P/M	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1 - 80/1	3010125				
	MBD 412	3010123				
GAS 7 P/M	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1 - 80/1	3010125				
GAS 8 P/M	MBD 420 - CB 50/1 - CBF 65/1 - 80/1 - 100/1	3010125				
GAS 9 P/M	CBF 65/1 - 80/1 - 100/1	3010125				
GAS 10 P/M	CBF 65/1 - 80/1 - 100/1	3010125				

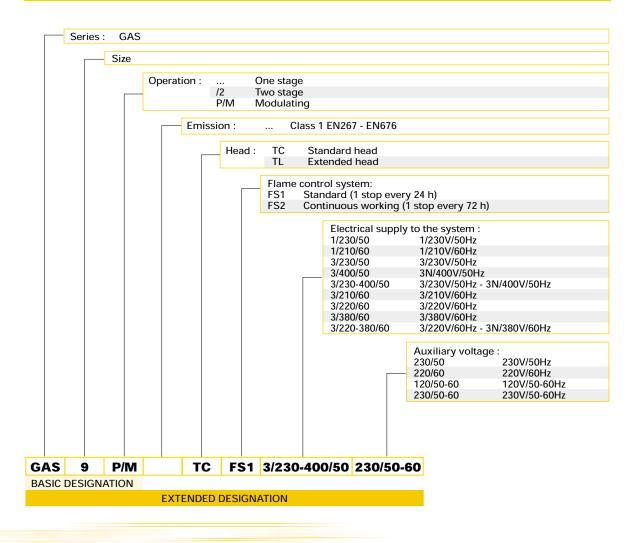
Stabiliser spring

Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range

0	
R	
\approx	
2	
\approx	
3	
B	
~	

Stabiliser spring							
Gas train	Spring code						
CBF 65/1 - CBF 80/1	Red from 25 to 55 mbar	3010133					
CBF 100/1	Red from 25 to 55 mbar	3010134					
CBF 65/1 - CBF 80/1	Black from 60 to 110 mbar	3010135					
CBF 100/1	Black from 60 to 110 mbar	3010136					
CBF 65/1 - CBF 80/1	Pink from 90 to 150 mbar	3090456					
CBF 100/1	Pink from 90 to 150 mbar	3090489					

Please refer to the technical manual for the correct choice of spring.


SPECIFICATION

T

Ē

A specific index guides your choice of burner from the various models available in the GAS P/M series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

AVAILAB	AVAILABLE BURNER MODELS									
GAS 3 P/M	TC	FS1	1/210/60	120/50-60	GAS 9 P/M	TC	FS1	3/220-380/60	220/60	
GAS 3 P/M	тс	FS1	1/230/50	230/50-60	GAS 9 P/M GAS 9 P/M	TC TC	FS1 FS1	3/230/50 3/230/50	230/50 230/50-60	
GAS 4 P/M	тс	FS1	1/230/50	230/50-60	GAS 9 P/M	тс	FS1	3/230-400/50	230/50	
GAS 4 P/M	тс	FS1	3/210/60	120/50-60	GAS 9 P/M	тс	FS1	3/230-400/50	230/50-60	
GAS 4 P/M	тс	FS1	3/220-380/60	220/60	GAS 9 P/M	TC	FS1	3/400/50	230/50	
	то	504	0/04 0/00	100/50 00	GAS 9 P/M	TC	FS1	3/400/50	230/50-60	
GAS 5 P/M	TC	FS1	3/210/60	120/50-60	GAS 9 P/M	TL	FS1	3/220-380/60	220/60	
GAS 5 P/M GAS 5 P/M	TC TC	FS1 FS1	3/220-380/60 3/230-400/50	220/60	GAS 9 P/M	TL TL	FS1 FS1	3/230/50	230/50 230/50-60	
GAS 5 P/IVI	IC.	F21	3/230-400/50	230/50-60	GAS 9 P/M GAS 9 P/M		FS1 FS1	3/230/50 3/230-400/50	230/50-60	
GAS 6 P/M	тс	FS1	3/210/60	120/50-60	GAS 9 P/M	TL	FS1	3/230-400/50	230/50-60	
GAS 6 P/M	TC	FS1	3/220-380/60	220/60	GAS 9 P/M	TL	FS1	3/400/50	230/50	
GAS 6 P/M	TC	FS1	3/230-400/50	230/50-60	GAS 9 P/M	ΤĹ	FS1	3/400/50	230/50-60	
GAS 7 P/M	тс	FS1	3/210/60	120/50-60	GAS 10 P/M	тс	FS1	3/220/60	220/60	
GAS 7 P/M	ŤČ	FS1	3/220-380/60	220/60	GAS 10 P/M	ŤČ	FS1	3/230/50	230/50	
GAS 7 P/M	TC	FS1	3/230-400/50	230/50-60	GAS 10 P/M	TC	FS1	3/230/50	230/50-60	
					GAS 10 P/M	тс	FS1	3/380/60	220/60	
GAS 8 P/M	тс	FS1	3/220-380/60	220/60	GAS 10 P/M	тс	FS1	3/400/50	230/50	
GAS 8 P/M	тс	FS1	3/230-400/50	230/50	GAS 10 P/M	тс	FS1	3/400/50	230/50-60	
GAS 8 P/M	тс	FS1	3/230-400/50	230/50-60	GAS 10 P/M	TL	FS1	3/220/60	220/60	
GAS 8 P/M	TL	FS1	3/220-380/60	220/60	GAS 10 P/M	TL	FS1	3/230/50	230/50	
GAS 8 P/M	TL	FS1	3/230-400/50	230/50	GAS 10 P/M	TL	FS1	3/230/50	230/50-60	
GAS 8 P/M	TL	FS1	3/230-400/50	230/50-60	GAS 10 P/M	TL	FS1	3/380/60	220/60	
					GAS 10 P/M GAS 10 P/M	TL	FS1	3/400/50	230/50	
					GAS TU P/IVI	TL	FS1	3/400/50	230/50-60	

Other versions are available on request

▼

PRODUCT SPECIFICATION

Burner:

Monoblock forced draught gas burner, two stage progressive operation or modulating with a kit, made up of:

- Air suction circuit
- Fan with forward curved blades
- Air damper for air setting controlled by a servomotor;
- Combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - flame stability disk
- Servomotor for air and gas delivery regulation
- Maximum gas pressure switch
- Minimum air pressure switch
- Single phase or three phases electrical motor
- UV photocell for flame detection
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 40 protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with:

- Filter
- Stabiliser
- Minimum gas pressure switch
- Safety valve
- Valve seal control (for output > 1200 kW)
- One stage working valve with ignition gas output regulator.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 1 insulating screen
- I insulating screen
- 8 screws for fixing the burner flange to the boiler (12 for GAS 8 P/M GAS 9 P/M and GAS 10 P/M)
- 4 wiring looms for electrical connections
- 1 star delta starter (for GAS 8 P/M GAS 9 P/M and GAS 10 P/M)
- 2 wiring looms for electrical connections to the star delta starter (for GAS 8 P/M GAS 9 P/M and GAS 10 P/M)
- 8 washers (for GAS 8 P/M GAS 9 P/M and GAS 10 P/M)
- 2 bar extensions (only for long head versions of GAS 8 P/M GAS 9 P/M and GAS 10 P/M)
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Head extension kit
- Head length reduction kit
- Continuous ventilation kit
- Sound-proofing box
- RWF 40 output regulator
- Pressure probe 0 2.4 bar
- Pressure probe 0 16 bar
- Temperature probe -100 500°C
- Potentiometer kit for the servomotor
- LPG kit
- Gas train adapter
- Seal control kit
- Stabiliser spring.

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980 Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

ONE STAGE GAS BURNERS ► GAS SER

CE

RIES	GAS 3	130 ÷ 350 kW
	GAS 4	185 ÷ 465 kW
	GAS 5	325 ÷ 660 kW
	GAS 6	525 ÷ 1050 kW

The GAS series of burners cover a firing range from 130 to 1050 kW. Operation is "one stage"; the combustion head, that can be set on the basis of required output, allows optimal performance ensuring good combustion and reducing fuel consumption.

The GAS series are extremely reliable burners, featured by a simple use and an operation without particular maintenance intervention.

Simplified maintenance is achieved by the slide bar system, which allows easy access to all of the essential components of the combustion head. All electrical components are easily accessible only by dismounting a protection panel, thus guaranteeing a quick and simple intervention on components.

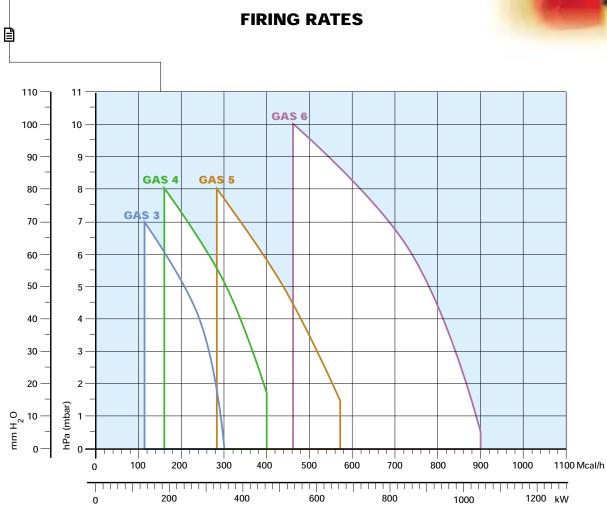
Ó

III

TECHNICAL DATA

Model			🔻 GAS 3	🔻 GAS 4	🔻 GAS 5	🔻 GAS 6		
Burner operati			One stage					
Modulation rat	io at max. ou	tput						
Servomotor type					-			
run time s					-			
Heat output		kW	130÷350	185÷465	325÷660	525÷1050		
		Mcal/h	112÷301	160÷400	280÷570	450÷900		
Working temp	erature	°C min./max.		0/	/40			
Net calorific va	lue gas G20	kWh/Nm ³		1	10			
Density gas G2	20	kg/Nm ³		0,	,71			
Output gas G2	0	Nm³/h	13÷35	18,5÷46,5	32,5÷66	52,5÷105		
Net calorific va	lue gas G25	kWh/Nm ³		8	,6			
Density gas G2	25	kg/Nm ³		0,	.78			
Output gas G2	5	Nm ³ /h	15÷41	22÷54	38÷77	61÷122		
Net calorific value LPG gas kWh/Nm ³				2	5,8			
Density LPG ga	is	kg/Nm ³		.02				
Output LPG ga	s	Nm ³ /h	5,8÷14	7÷18	13÷26	20÷41		
Fan		Туре	Centrifugal with forward curve blades					
Air temperatur	e	Max. °C		(60			
Electrical supp	ly	Ph/Hz/V	1/50/230~(±10%) 3N/50/400~(±10%) 人 3/50/230~(±10%) △					
Auxiliary electi	rical supply	Ph/Hz/V		1/50/230) ~ (±10%)			
Control box		Туре		RI	MG			
Total electrical	power	kW	0,4	0,54	0,85	1,7		
Auxiliary elect	rical power	kW	0,15	0,17	0,1	0,2		
Protection leve	el	IP		4	10			
Motor electrica	al power	kW	0,25	0,37	0,75	1,5		
Rated motor c	urrent	Α	1,8	2,9	2,85÷1,65	5,9÷3,4		
Motor start up	current	Α	4,8	9,5	10÷6	22,5÷13		
Motor protecti		IP			54			
		V1 - V2	230 V - 1x8 kV					
Ignition transfo	ormer	l1 - l2	1,8 A - 30 mA					
Operation				Intermittent (at least	t one stop every 24 h)			
Sound pressur	e	dBA	75	78	83	84		
Sound power		w			-			
CO Emission		mg/kWh		< 1	100			
NO _x Emission		mg/kWh		< 1	170			
Directive				73/23 - 89/336 - 9	0/396 - 92/42 EEC			
Conforming to				EN	676			
Certification			CE 0085AQ0707					

Reference conditions:


Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

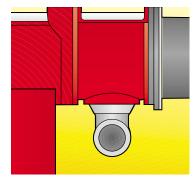
Ŧ

₿

Y

Useful working field for choosing the burner

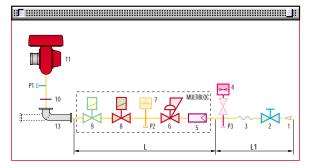
Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

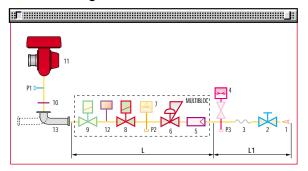


FUEL SUPPLY

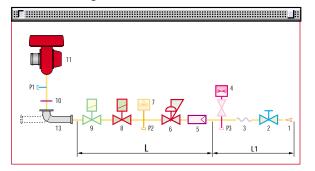
GAS TRAINS

Fuel can be supplied either from the right or left hand sides.

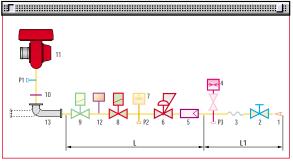

The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line. The gas train can be "Multibloc " type (containing the main components in a single unit) or "Composed" type (assembly of the single components).


B

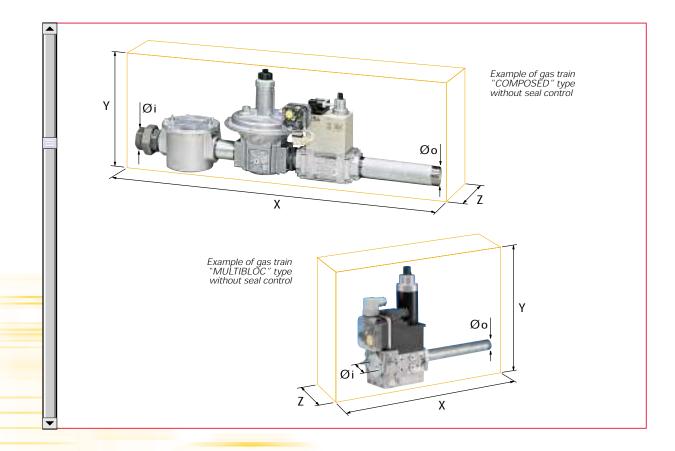
Example of the gas train connection flange of GAS burners.


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control



COMPOSED gas train without seal control



1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Burner
12	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
13	Gas train-burner adapter
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

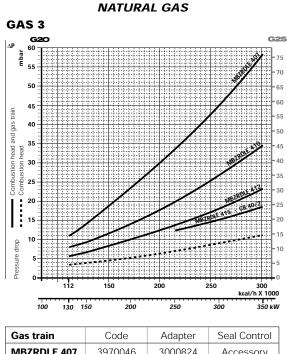
Gas trains are approved by standard EN 676 together with the burner.

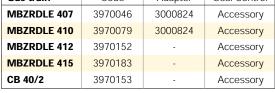
▼

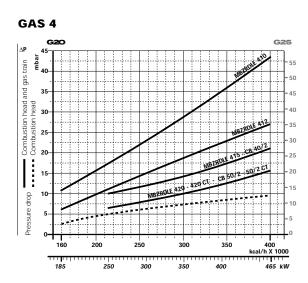
The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to the burners of GAS series, intake and outlet diameters and seal control if fitted.

Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

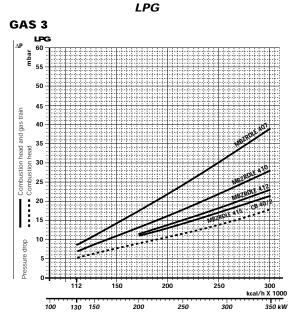
The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

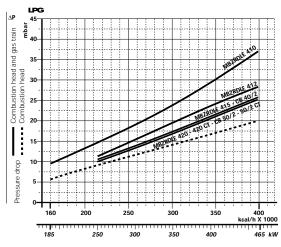

	Name	Code	Øi	Øо	X mm	Y mm	Z mm	Seal Control
-	MBZRDLE 407	3970046	3/4 "	3/4 "	371	256	120	-
	MBZRDLE 410	3970079	1″	3/4 "	405	315	145	-
<u> </u>	MBZRDLE 412	3970152	1″1/4	1″1/2	433	315	145	-
E	MBZRDLE 415	3970183	1″1/2	1″1/2	523	350	100	-
WULTIBLO	MBZRDLE 420	3970184	2″	2″	523	410	100	-
-	MBZRDLE 420 CT	3970185	2″	2″	523	410	227	Incorporated
<u> </u>	CB 40/2	3970153	1″1/2	1″1/2	1013	345	195	-
OSE	CB 50/2	3970154	2″	2″	1150	350	250	-
<u>Δ</u> i	- CB 50/2 CT	3970166	2″	2″	1150	350	320	Incorporated
N	CBF 65/2	3970155	DN 65	DN 65	1166	472	285	-
2,	CBF 65/2 CT	3970167	DN 65	DN 65	1166	472	390	Incorporated



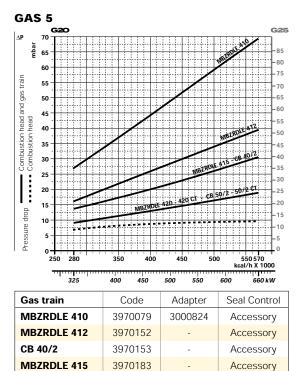

PRESSURE DROP DIAGRAMS

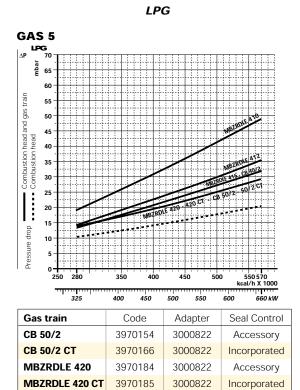
The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

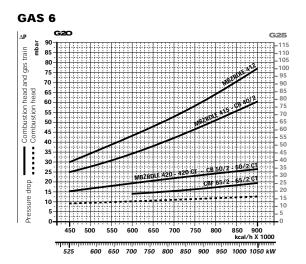

The value thus calculated represents the minimum required input pressure to the gas train.

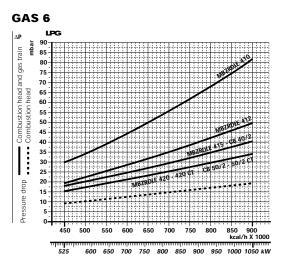


Gas train	Code	Adapter	Seal Control	
MBZRDLE 410	3970079	3000824	Accessory	
MBZRDLE 412	3970152	-	Accessory	
CB 40/2	3970153	-	Accessory	
MBZRDLE 415	3970183	-	Accessory	


Gas train	Code	Adapter	Seal Control
CB 50/2	3970154	3000822	Accessory
CB 50/2 CT	3970166	3000822	Incorporated
MBZRDLE 420	3970184	3000822	Accessory
MBZRDLE 420 CT	3970185	3000822	Incorporated


-




▼

Gas train	Code	Adapter	Seal Control
MBZRDLE 410	3970079	3000824 3000843	Accessory
MBZRDLE 412	3970152	3000843	Accessory
CB 40/2	3970153	3000843	Accessory
MBZRDLE 415	3970183	-	Accessory
CB 50/2	3970154	-	Accessory

Gas train	Code	Adapter	Seal Control
CB 50/2 CT	3970166	-	Incorporated
MBZRDLE 420	3970184	3000822	Accessory
MBZRDLE 420 CT	3970185	3000822	Incorporated
CBF 65/2	3970155	3000825	Accessory
CBF 65/2 CT	3970167	3000825	Incorporated

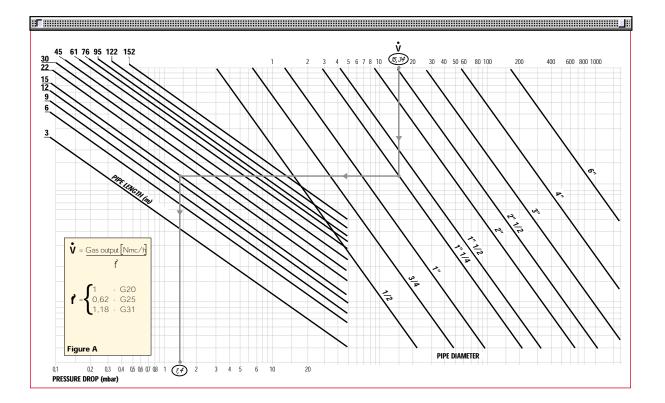
note

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.


Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale ($\dot{\mathbf{y}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example: - gas used G25 9.51 mc/h - gas output - pressure at the gas meter 20 mbar - gas line length 15 m 0.62 (see figure A) - conversion coefficient - equivalent methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51 \\ 0.62 \end{bmatrix} = 15.34 \text{ mc/h}$

- once the value of 15.34 has been identified on the output scale ($\dot{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the pipina:
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

Ŧ

B

•

B

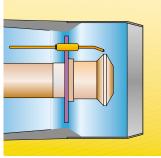
The ventilation circuit produces low noise levels with high performance pressure and air output, in spite of the compact dimensions.

The air damper is easy to set; when fitted, it makes no difference to air delivery.

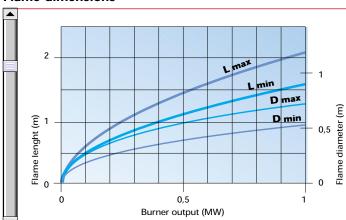
Example of fan air gate valve indexed selector of GAS burner

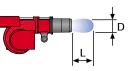
COMBUSTION HEAD

Different combustion head length can be selected for the various models of GAS series of burners.


The choice depends on the thickness of the front panel and type

of boiler. Correct head penetration into the combustion chamber depends on the type of heat generator.


These burners are equipped with adjustable combustion head.

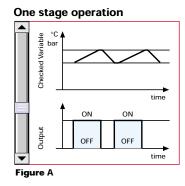

This enables optimum combustion performance throughout the working field, ensuring peak combustion efficiency thus saving on fuel consumption.

The following diagram shows the flame dimensions in relation to the burner output. The lengths and diameter shown in the diagram below should be employed for a preliminary check: if combustion chamber dimensions are different from the values in the diagram, further tests need to be done.

Example of a GAS burner combustion head

Example: Burner thermal output = 500 kW; L _{flame} (m) = 1,3 m (medium value); D _{flame} (m) = 0,45 m (medium value)

Flame dimensions



ADJUSTMENT

BURNER OPERATION MODE

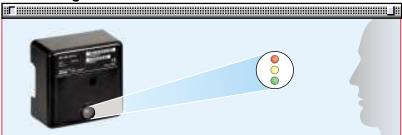
The burner of GAS series is one stage working.

On "one stage" operation, the burner adjusts output to the requested level, by varying between on-off phases (see figure A).

All GAS series burners are fitted with a new microprocessor control panel for the supervision during intermittent operation.

For helping the commissioning and maintenance work, there are two main elements:

The lock-out reset button is the central **operating element** for resetting the burner control and for activating / deactivating the diagnostic functions.


The multi-color LED is the central **indication element** for visual diagnosis and interface diagnosis.

Both elements are located under the transparent cover of lock-out reset button, as showed below.

There are two diagnostic choices, for indication of operation and diagnosis of fault cause:

- visual diagnosis :

- interface diagnosis :

by the interface adapter and a PC with dedicated software or by a predisposed flue gas analyzer (see paragraph accessories).

Y

₿

Indication of operation :

▼

In normal operation, the various statues are indicated in the form of colour codes according to the table below.

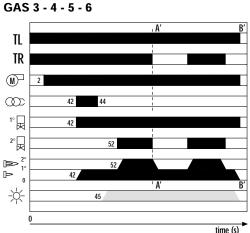
The interface diagnosis (with adapter) can be activated by pressing the lock-out button for > 3 seconds.

Color code table				
Operation statues	Color code table			
Stand-by	00000000			
Pre-purging	<u> </u>			
Ignition phase	\omega O \omega O \			
Flame OK	******			
Poor flame	<u> </u>			
Undervoltage, built-in fuse	**** ***			
Fault, alarm	****			
Extraneous light	**** ***			

○ LED off

Diagnosis of fault causes :

After lock-out has occurred, the red signal lamp is steady on. In this status, the visual fault diagnosis according to the error code table can be activated by pressing the lock-out reset button for > 3 seconds. The interface diagnosis (with adapter) can be activated by pressing again the lock-out button for > 3 seconds.

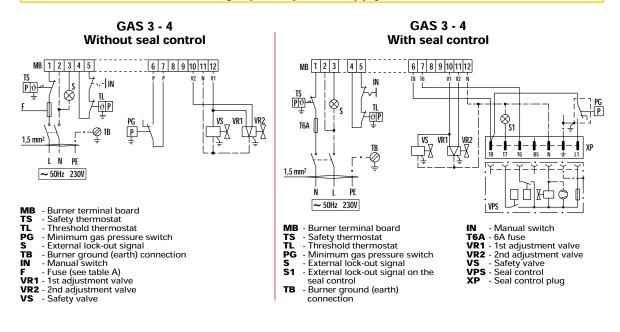

The blinkers of red LED are a signal with this sequence :

(e.g. signal with n° 3 blinks – faulty air pressure monitor)

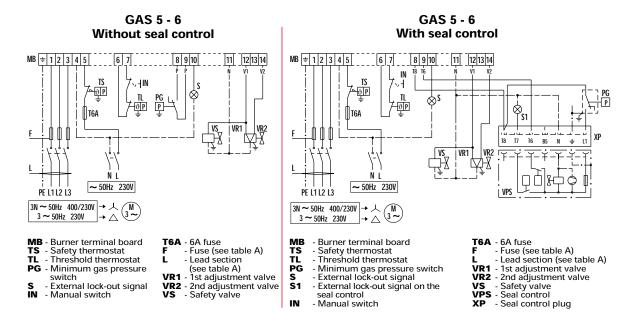
Error code table				
Possible cause of fault	Blink code			
No establishment of flame at the end of safety time : - faulty or soiled fuel valves - faulty or soiled flame detector - poor adjustment of burner, no fuel - faulty ignition equipment	**			
Faulty air pressure monitor	**			
Extraneous light or simulation of flame on burner start up	***			
Loss of flame during operation : - faulty or soiled fuel valves - faulty or soiled flame detector - poor adjustment of burner	*****			
Wiring error or internal fault	*****			

START UP CYCLE

- 0 s The burner begins the firing cycle.
- 2 s The motor starts: pre-purge phase.
- 42 s Ignition electrode sparks; the safety valve and the firing delivery valve opens.
- 45 s Lock out signal is activated if flame is not revealed by the flame detector.
- 52 s The working valve opens; the start up cycle is concluded.

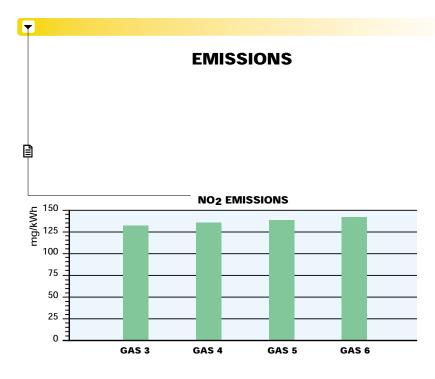

WIRING DIAGRAMS

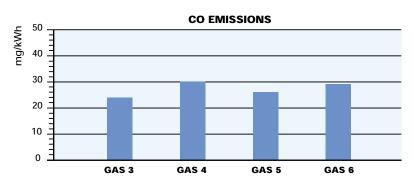
Y

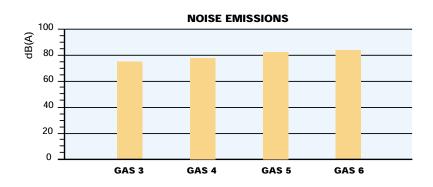

B

Electrical connections must be made by qualified and skilled personnel, according to the local norms.

• ONE STAGE OPERATION - Single-phase power supply

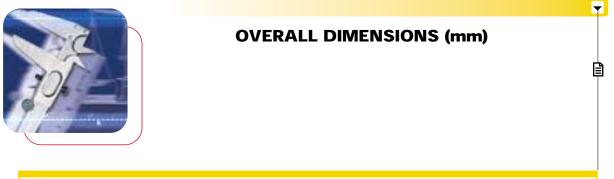



ONE STAGE OPERATION - Triple-phase power supply

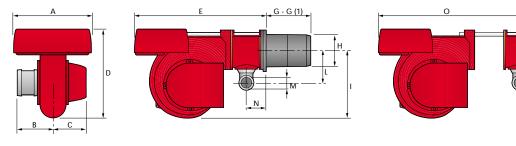


The following table shows the supply lead sections and the type of fuse to be used.

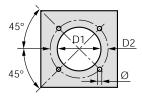
Mo	del	▼ GAS 3	▼ GAS 4	▼ GA	IS 5	▼ GA	IS 6
		230V	230V	230V	400V	230V	400V
F	А	T5	Τ6	Τ6	Τ6	T16	T10
L	mm ²	1,5	1,5	1,5	1,5	1,5	1,5



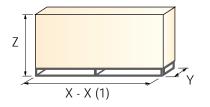
The emission data has been measured in the various models at maximum output, according to EN 676 standard.



BURNERS


GAS 3 - 4 - 5 - 6

Model	A	В	С	D	E	G - G (1)	Н	I	L	М	Ν	0
GAS 3	410	205	205	397	610	185 - 320	140	292	165	1″1/2	97	775
GAS 4	410	205	205	397	610	187 - 320	150	292	165	1″1/2	97	775
GAS 5	431	226	205	437	645	207 - 365	155	332	165	1″1/2	97	810
GAS 6	463	258	205	485	770	227 - 360	175	370	195	2″	131	966


(1) Length with extended combustion head

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
GAS 3	155	226	M10
GAS 4	165	226	M10
GAS 5	165	226	M10
GAS 6	185	276	M12

PACKAGING

Model	X - X (1)	Y	Ζ	kg
GAS 3	850	545	473	32
GAS 4	850	545	473	38
GAS 5	895	543	520	41
GAS 6	1045	543	555	58

(1) Length with extended combustion head

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

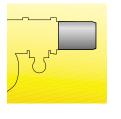
BURNER SETTING

B

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.
- Refit the burner casing to the slide bars.
- Close the burner, sliding it up to the flange.

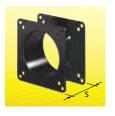
ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.
- Perform a first ignition calibration on the gas train.
- On start up, check:
 - Gas pressure at the combustion head (to max. and min. output)
 - Combustion quality, in terms of unburned substances and excess air.



BURNER ACCESSORIES

Extended head kit


"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

Extended head kit						
Burner	Standard head length (mm)	Extended head length (mm)	Kit code			
GAS 3	185	320	3000605			
GAS 4	187	320	3000606			
GAS 5	207	365	3000607			
GAS 6	227	360	3000608			

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

Spacer kit					
Burner	Spacer thickness S (mm)	Kit code			
GAS 3 - 4 - 5 - 6	142	3000755			

Continuous ventilation kit

If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

Continuc	us ventilation kit
Burner	Kit code
GAS 3 - 4 - 5 - 6	3010030

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

	Sound proofing box	
Burner	Box type	Box code
GAS 3 - 4 - 5	C2	3000777
GAS 6	C3	3000778

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:

	LPG kit	
Burner	Kit code for standard head	Kit code for extended head
GAS 3	3000657	3000807
GAS 4	3000658	3000808
GAS 5	3000659	3000809
GAS 6	3000753	3000810

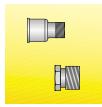
Y

B

Interface adapter kit

To connect the flame control panel to a personal computer for the transmission of operation, fault signals and detailed service information, an interface adapter with PC software are available.

▼


Interfac	e adapter
Burner	Kit code
GAS 3 - 4 - 5 - 6	in progress

GAS TRAIN ACCESSORIES

Adapters

B

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

	Adapt	ters	
Burner	Gas train	Dimensions	Adapter code
GAS 3	MBZRDLE 407 - 410	3/4" 1" 1/2	3000824
GAS 4	MBZRDLE 410	3/4" [1" 1/2	3000824
0/10 4	MBZRDLE 420 - CB 50/2	2" 1" 1/2	3000822
GAS 5	MBZRDLE 410	3/4" 1" 1/2	3000824
GAS 5	MBZRDLE 420 - CB 50/2	2" 1" 1/2	3000822
	MBZRDLE 410	3/4" 1" 1/2 1" 1/2 1" 2"	3000824 3000843
GAS 6	MBZRDLE 412 - 415 - CB 40/2	1" 1/2	3000843
	CBF 65/2	DN 65 2"1/2 2"2"2"2"2"2"2"	3000825

Stabiliser spring

Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range.

3		Stabiliser springs	
S	Gas train	Spring	Code
No.	CBF 65/2	Red from 25 to 55 mbar	3010133
3	CBF 65/2	Black from 60 to 110 mbar	3010135
0	CBF 65/2	Pink from 90 to 150 mbar	3090456

Please refer to the technical manual for the correct choice of spring.

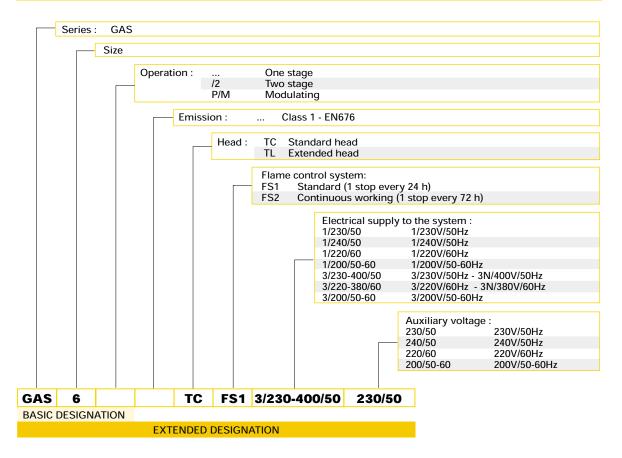
Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The sealing control is type VPS 504.

Seal control kit					
Burner	Gas train	Kit code			
	MBZRDLE 407 - 410 - 412	3010123			
GAS 3	MBZRDLE 415 - CB 40/2	3010125			
GAS 4	MBZRDLE 410 - 412	3010123			
	MBZRDLE 415 - 420 - CB 40/2 - 50/2	3010125			
GAS 5	MBZRDLE 410 - 412	3010123			
	MBZRDLE 415 - 420 - CB 40/2 - 50/2	3010125			
GAS 6	MBZRDLE 410 - 412	3010123			
	MBZRDLE 415 - 420 - CB 40/2 - 50/2 - 65/2	3010125			

▼

Y


₿

SPECIFICATION

A specific index guides your choice of burner from the various models available in the GAS series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

AVAILABLE BURNER MODELS

GAS 3	TC	FS1	1/200/50-60	200/50-60
GAS 3	TC	FS1	1/220/60	220/60
GAS 3	TC	FS1	1/230/50	230/50
GAS 3	TC	FS1	1/240/50	240/50
GAS 3	TL	FS1	1/240/50	240/50
GAS 4	TC	FS1	1/230/50	230/50
GAS 4	TC	FS1	3/200/50-60	200/50-60
GAS 4	TC	FS1	3/220-380/60	220/60

GAS 5	TC	FS1	3/200/50-60	200/50-60
GAS 5	TC	FS1	3/220-380/60	220/60
GAS 5	TC	FS1	3/230-400/50	230/50
GAS 6	TC	FS1	3/200/50-60	200/50-60
GAS 6	TC	FS1	3/220-380/60	220/60
GAS 6	TC	FS1	3/230-400/50	230/50

Other versions are available on request.

PRODUCT SPECIFICATION

Burner:

Monoblock forced draught gas burner with one stage operation, fully automatic, made up of: - Air suction circuit

- Fan with forward curve blades high performance concerning pressure and air delivery

- Air damper for air setting
- Starting motor at 2800 rpm
- Combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
- Microprocessor-based flame control panel with diagnostic functions
- Terminal strip for electrical connections
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 44 electric protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 40 until a diameter of DN 65), fitted with:

- Filter
- Stabiliser
- Minimum gas pressure switch
- Safety valve
- One stage or two stage working valve with ignition gas output regulator.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.


Available accessories to be ordered separately:

- Extended head kit
- Spacer kit
- Continuous ventilation kit
- Sound-proofing box
- LPG kit
- Interface adapter kit
- Gas train adapter
- Stabiliser spring
 Seal control kit.

Lineagrafica

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

CE

ONE STAGE GAS BURNERS ▶ RS/1 SERIES ▶ RS 28/1 163 ÷ 349 kW ▶ RS 38/1 232 ÷ 465 kW

The RS/1 series of burners covers a firing range from 163 to 465 kW, and they have been designed for use in hot or superheater water boilers, hot air or steam generators, diathermic oil boilers.

Setting is "one stage"; optimisation of sound emissions is guaranteed by the use of fans with forward inclined blades and sound deadening material incorporated in the air suction circuit.

The elevated performance of the fans and combustion head, guarantee flexibility of use and excellent working at all firing rates.

The exclusive design ensures reduced dimensions, simple use and maintenance. A wide range of accessories guarantees elevated working flexibility.

Þ

Ξ

TECHNICAL DATA

Mod	lel		▼ RS 28/1	▼ RS 38/1					
			0.00						
	her operation mo		One stage						
	lulation ratio at n	nax. output	-	-					
Serv	or		-	-					
	Run time	s		- 					
Heat	t output	kW	163÷349	232÷465					
		Mcal/h	140÷300	200÷400					
	king temperature		0/-						
	alorific value gas G20		1						
	sity gas G20	kg/Nmc	0,7						
-	out gas G20	Nmc/h	16÷35	23÷46,5					
	alorific value gas G25		8,						
	sity gas G25	kg/Nmc	0,7						
-	out gas G25	Nmc/h	19÷41	27÷54					
Net ca	alorific value LPG gas	kWh/Nmc	25						
Dens	sity LPG gas	kg/Nmc	2,0						
Outp	out LPG gas	Nmc/h	6,5÷13,5	9÷18					
Fan		Туре	centrifugal with re						
Air t	emperature	Max. °C	6	0					
Elect	trical supply	Ph/Hz/V	1/50/230)~(±10%)					
Auxili	iary electrical supply	Ph/Hz/V	1/50/230	~ (±10%)					
Cont	trol box	Туре	MMI	813					
Tota	l electrical power	kW	0,37	0,60					
Auxili	iary electrical power	kW	0,12	0,12					
Prot	ection level	IP	4	4					
Moto	or electrical power	kW	0,25	0,42					
Rate	ed motor current	Α	2,1	2,9					
Mot	or start current	Α	4,8	11					
Moto	or protection level	IP	5	4					
Ignit	tion	V1 - V2	230V -	1x8 kV					
	sformer	11 - 12	1A - 2	20 mA					
Wor	king		Intermittent (at least	one stop every 24 h)					
Sour	nd pressure	dBA	68	70					
Sour	nd output	w							
COE	Emission	mg/kWh	< 40						
NOx	Emission	mg/kWh	< 1	30					
Dire	ctive		90/396 - 89/336 -	73/23 - 92/42 EEC					
Conf	forming to		EN	676					
Cert	ification		CE 63A	AP6680					

Reference conditions:

T

Ē

Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

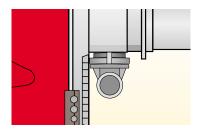
Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful working field for choosing the burner

۲-۲ Modulation range

Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

FUEL SUPPLY

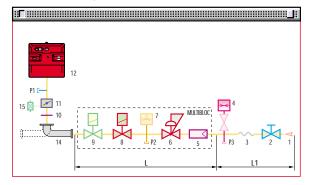

GAS TRAINS

Fuel can be supplied either from the right or left hand sides.

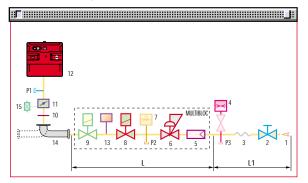
The gas train can be selected to best fit system requirements

depending on the fuel output and pressure in the supply line. The gas train can be "Multibloc " type (containing the main components in a single unit) or "Composed" type (assembly of the single components).

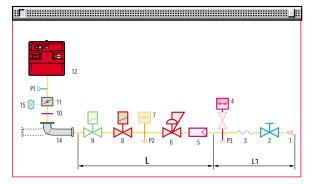
The gas train can be, also, "One stage" or "Two stage" type. One stage gas train can be used on RS28/1 for all firing rates, and on RS38/1 up to a capacity of 350 kW.



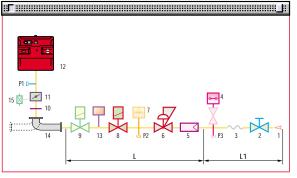
Y

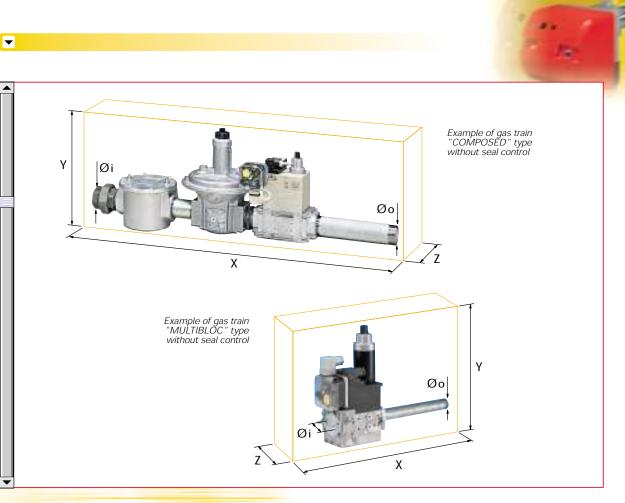

B

Example of the gas train connection flange of RS/1 burners.


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control





1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock.
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Gas adjustment butterfly valve
12	Burner
13	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW.
14	Gas train-burner adapter.
15	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer' s responsibility

COMPOSED gas train with seal control

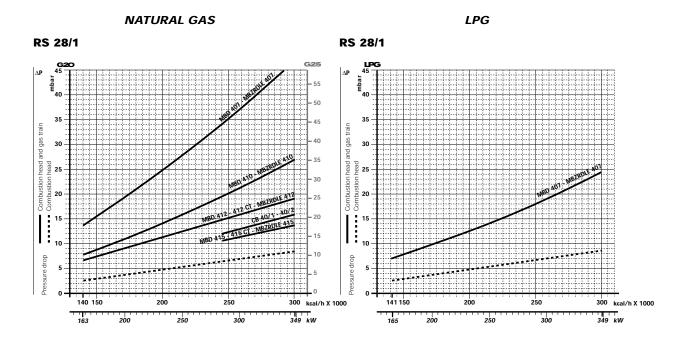
Gas trains are approved by standard EN 676 together with the burner.

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RS/1 burners, intake and outlet diameters and seal control if fitted.

Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

		Name	Code	Øi	Øo	X mm	Y mm	Z mm	Seal Control
		MBD 407	3970076	3/4 "	3/4 "	371	196	120	-
	4	MBD 410	3970077	1″	3/4 "	405	217	145	-
	NS	MBD 412	3970144	1″1/4	1″1/2	433	217	145	
ONE STAGE GAS TRAINS	MULTIBLO GAS TRAINS	MBD 412 CT	3970197	1″1/4	1″1/2	433	217	262	Incorporated
VS TF		MBD 415	3970180	1″1/2	1″1/2	523	250	100	-
E G	MU 8	MBD 415 CT	3970198	1″1/2	1″1/2	523	250	227	Incorporated
STAG	-	MBD 420	3970181	2″	2″	523	300	100	-
NE		MBD 420 CT	3970182	2″	2″	523	300	227	Incorporated
0		CB 40/1	3970145	1″1/2	1″1/2	891	261	195	-
	COMPOSED GAS TRAINS	CB 50/1	3970146	2″	2″	986	328	250	-
	CON	CB 50/1 CT	3970160	2″	2″	986	328	320	Incorporated
	4	MBZRDLE 407	3970046	3/4 "	3/4 "	371	256	120	-
s	NSO NSO	MBZRDLE 410	3970079	1″	3/4 "	405	315	145	-
STAGE GAS TRAINS	MULTIBLOC GAS TRAINS	MBZRDLE 412	3970152	1″1/4	1″1/2	433	315	145	-
AS TI	LT S T	MBZRDLE 415	3970183	1″1/2	1″1/2	523	350	100	-
Э.	NU 6A	MBZRDLE 420	3970184	2″	2″	523	410	100	-
STAC	-	MBZRDLE 420 CT	3970185	2″	2″	523	410	227	Incorporated
OML		CB 40/2	3970153	1″1/2	1″1/2	1013	345	195	-
-	COMPOSED GAS TRAINS	CB 50/2	3970154	2″	2″	1150	350	250	-
	CON	CB 50/2 CT	3970166	2″	2″	1150	350	320	Incorporated



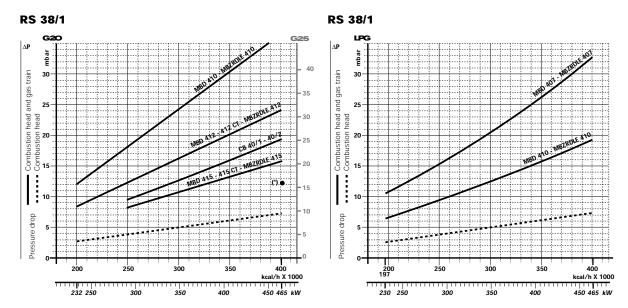
PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

▼

The value thus calculated represents the minimum required input pressure to the gas train.

Gas train	Code	Adapter	Seal Control
MBD 407	3970076	3000824	Accessory
MBZRDLE 407	3970046	3000824	Accessory
MBD 410	3970077	3000824	Accessory
MBZRDLE 410	3970079	3000824	Accessory
MBD 412	3970144	-	Accessory
MBD 412 CT	3970197	-	Incorporated
MBZRDLE 412	3970152	-	Accessory
MBD 415	3970180	-	Accessory
MBD 415 CT	3970198	-	Incorporated
MBZRDLE 415	3970183	-	Accessory
CB 40/1	3970145	-	Accessory
CB 40/2	3970153	-	Accessory



NATURAL GAS

-

(*) MBD 420 - MBD 420 CT - MBZRDLE 420 - MBZRDLE 420 CT - CB 50/1 - CB 50/1 CT - CB 50/2 - CB 50/2 CT

Cas train	Cada	Adamtan	Cool Combrol
Gas train	Code	Adapter	Seal Control
MBD 407	3970076	3000824	Accessory
MBZRDLE 407	3970046	3000824	Accessory
MBD 410	3970077	3000824	Accessory
MBZRDLE 410	3970079	3000824	Accessory
MBD 412	3970144	-	Accessory
MBD 412 CT	3970197	-	Incorporated
MBZRDLE 412	3970152	-	Accessory
CB 40/1	3970145	-	Accessory
CB 40/2	3970153	-	Accessory
MBD 415	3970180	-	Accessory
MBD 415 CT	3970198	-	Incorporated
MBZRDLE 415	3970183	-	Accessory
CB 50/1	3970146	3000822	Accessory
CB 50/1 CT	3970160	3000822	Incorporated
CB 50/2	3970154	3000822	Accessory
CB 50/2 CT	3970166	3000822	Incorporated
MBD 420	3970181	3000822	Accessory
MBD 420 CT	3970182	3000822	Incorporated
MBZRDLE 420	3970184	3000822	Accessory
MBZRDLE 420 CT	3970185	3000822	Incorporated

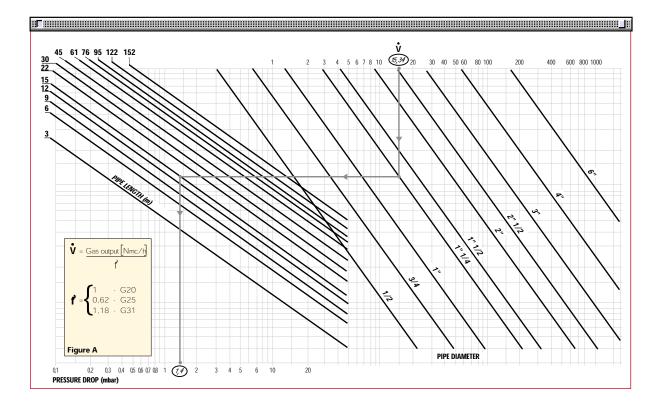
• note Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

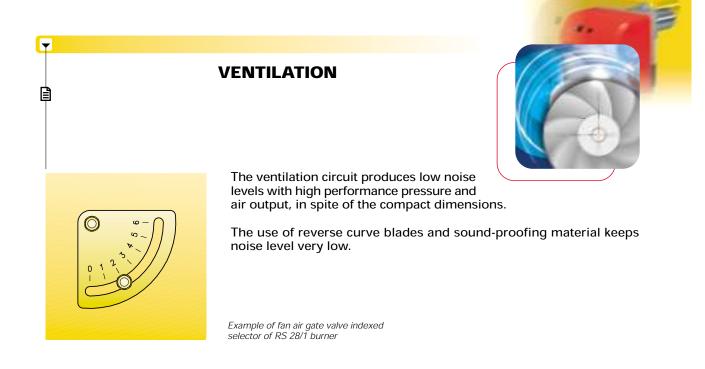
SELECTING THE FUEL SUPPLY LINES

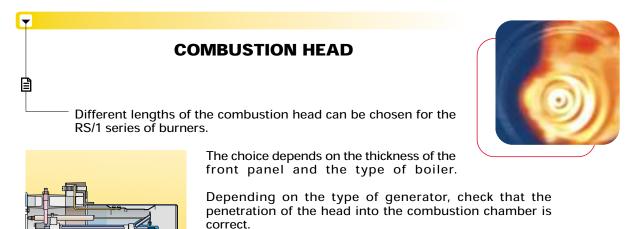
The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

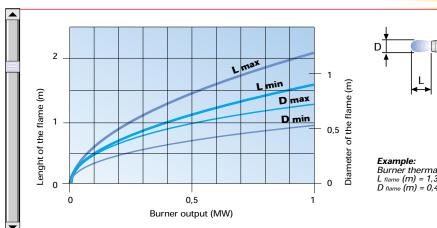

Once the equivalent output has been determined on the delivery scale ($\dot{\mathbf{V}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

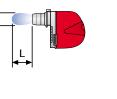

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.


- Example: - gas used G25 9.51 mc/h - gas output - pressure at the gas meter 20 mbar - gas line length 15 m
 - conversion coefficient
- equivalent methane output $\dot{\mathbf{V}} = \begin{bmatrix} 9.51 \\ 0.62 \end{bmatrix} = 15.34 \text{ mc/h}$
- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping); - from this point, move horizontally to the left until you meet the line that represents the length of 15 m

0.62 (see figure A)

- of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar



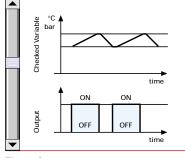


The internal positioning of the combustion head can easily be adjusted to the maximum defined output by adjusting a screw fixed to the flange.

Example of a RS/1 burner combustion head

Dimensions of the flame

Example: Burner thermal output = 500 kW; L name (m) = 1,3 m (medium value); D name (m) = 0,45 m (medium value)

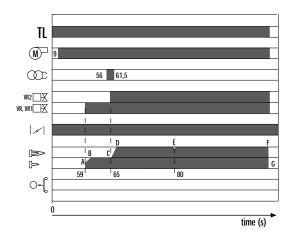

ADJUSTMENT

BURNER OPERATION MODE

The burner of RS/1 series is one stage working.

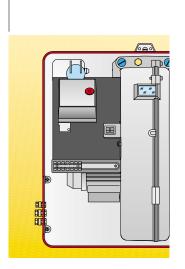
On "one stage" operation, the burner adjusts output to the requested level, by varying between on-off phases (see figure A).

One stage operation

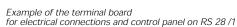

T

₿

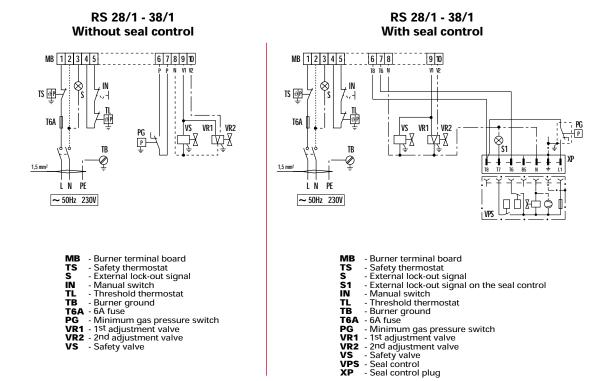
Figure A


FIRING

- 0″ The burner begins the firing cycle
- 9″ The motor starts: pre-purge phase. The air damper is set on maximum output 56″
- Pre-ignition Safety valve VS and the 1st stage VR1 of the adjustment valve VR open 59″
- After-ignition 61,5"
- 65″ The second stage VR2 of valve VR opens 80″ The control panel starting cycle ends.



Ŧ


₿

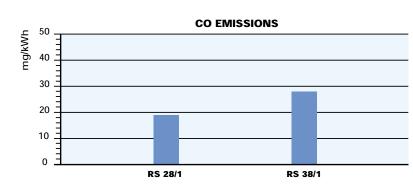
ELECTRICAL CONNECTIONS To be made by the installer

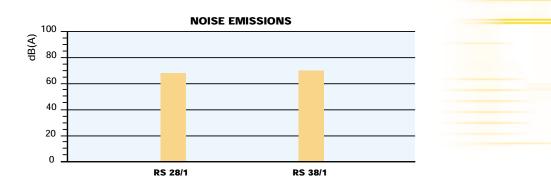
> Electrical connections must be made by qualified and skilled personnel, according to the local norms.

• "ONE STAGE" OPERATION

The following table shows the supply lead sections and the type of fuse to be used.

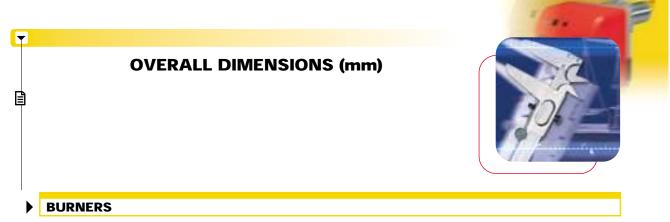
Model		▼ RS 28/1	▼RS 38/1		
		230V	230V		
F	А	Τ6	Τ6		
L	mm ²	1,5	1,5		

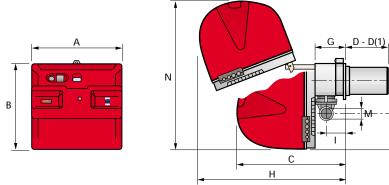




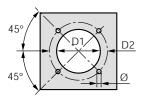
T

₿

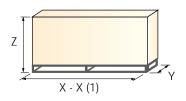

NO2 EMISSIONS



The emission data has been measured in the various models at maximum output, according to EN 676 standard.


RS 28/1 - 38/1

Model	А	В	С	D - D(1)	Е	F	G	Н	I	L	М	Ν
▶ RS 28/1	476	474	580	216 - 351	140	352	164	810	108	168	1"1/2	719
▶ RS 38/1	476	474	580	216 - 351	140	352	164	810	108	168	1"1/2	719


(1) Dimension with "extended head".

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
▶ RS 28/1	160	224	M8
▶ RS 38/1	160	224	M8

PACKAGING

Model	X - X (1)	Y	Z	kg
▶ RS 28/1	872 - 1007	540	550	37
▶ RS 38/1	872 - 1007	540	550	39

(1) dimension with extended head.

INSTALLATION DESCRIPTION

B

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.
- Refit the burner casing to the slide bars.
- Close the burner, sliding it up to the flange.

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.
- Perform a first ignition calibration on the gas train.
- On start up, check:
 - Gas pressure at the combustion head (to max. and min. output)
- Combustion quality, in terms of unburned substances and excess air.

Extended heads

Y

Ē

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

		Combustion head	l extension kits	
Bu	rner h	'Standard' lead length (mm)	'Extended' head length (mm)	Kit code
RS	28/1	216	351	3010091
RS	38/1	216	351	3010092

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

	Head length reduction kit	
Burner	Spacer thickness S (mm)	Kit code
RS 28/1 - 38/1	90	3010095

Continuous ventilation kit

If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

Continuous ventilati	on kit
Burner	Kit code
RS 28/1 - 38/1	3010094

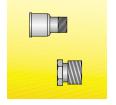
Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

	Sound proofing box	
Burner	Box type	Box code
RS 28/1 - 38/1	C2	3000777

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:



LPG I	cit
Burner	Kit code
RS 28/1	3010089
RS 38/1	3010090

GAS TRAIN ACCESSORIES

Adapters

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

	Adapter	S	
Burner	Gas train	Dimensions	Adapter code
	MBD 407	3/4" 1" 1/2	3000824
RS 28/1	MBZRDLE 407	3/4" 1" 1/2	3000824
10 20/1	MBD 410	3/4" 1" 1/2	3000824
	MBZRDLE 410	3/4" 1" 1/2	3000824
	MBD 407 - 410	3/4" 1" 1/2	3000824
	MBZRDLE 407 - 410	3/4" 1" 1/2	3000824
RS 38/1	MBD 420 - CB 50/1	2" 1" 1/2	3000822
	MBD 420 CT - CB 50/1 CT	2" 1" 1/2	3000822
	MBZRDLE 420 - CB 50/2	2" 1" 1/2	3000822
	MBZRDLE 420 CT - CB 50/2 CT	2" 1" 1/2	3000822

▼

Y

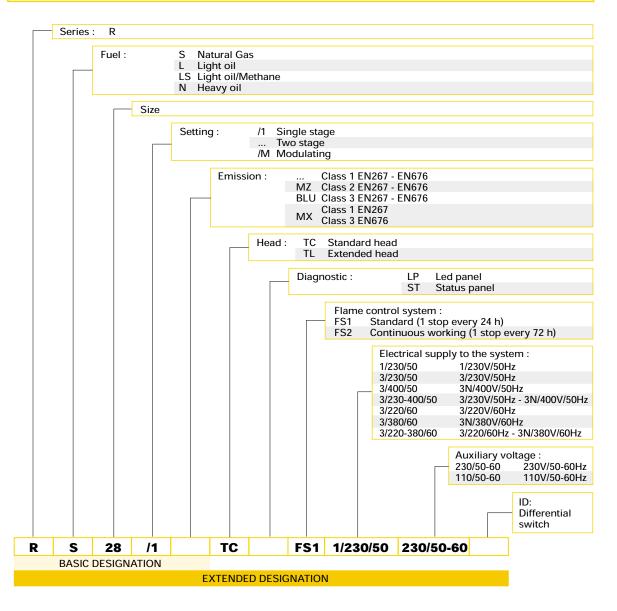
Ē

Seal control kit

▼

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The sealing control is type VPS 504.

	Seal control kit	
Burner	Gas train	Kit code
	MBD 407 - MBZRDLE 407	3010123
	MBD 410 - MBZRDLE 410	3010123
RS 28/1	MBD 412 - MBZRDLE 412	3010123
	MBD 415 - CB 40/1	3010123
	MBZRDLE 415 - CB 40/2	3010125
	MBD 407 - MBZRDLE 407	3010123
	MBD 410 - MBZRDLE 410	3010123
	MBD 412 - MBZRDLE 412	3010123
RS 38/1	MBD 415 - MBD 420	3010123
	CB 40/1 - CB 50/1	3010123
	MBZRDLE 415 - CB 40/2	3010125
	MBZRDLE 420 - CB 50/2	3010125


SPECIFICATION

Y

₿

A specific index guides your choice of burner from the various models available in the RS/1 series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

LIST OF AVAILABLE MODELS

	1/230/50 1/230/50	230/50-60 230/50-60
	1/230/50 1/230/50	230/50-60 230/50-60

PRODUCT SPECIFICATION

Burner:

▼

Monoblock forced draught gas burner with one stage operation, fully automatic, made up of: - Air suction circuit lined with sound-proofing material

- Fan with reverse curve blades high performance with low sound emissions
- Air damper for air flow setting
- Starting motor at 2800 rpm, (single-phase, 230V, 50Hz)
- Combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
- Flame control panel
- Terminal strip for electrical connections
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 44 electric protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 40 until a diameter of DN 50), fitted with:

- Filter
- Stabiliser
 Minimum gas pressure switch
- Safety valve
- One stage or two stage working valve with ignition gas output regulator.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- 4 fairleads for electrical connection
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Head extension kit
- Head length reduction kit
- Continuous ventilation kit
- Sound-proofing box
- LPG kit
- Gas train adapter
- Seal control kit.

Lineagrafica

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

TWO STAGE GAS BURNERS

CE

▶ RS 28	81/163 ÷	325 kW
▶ RS 38	105/232 ÷	440 kW
▶ RS 50	116/290 ÷	580 kW
▶ RS 70	192/465 ÷	814 kW
▶ RS 100	232/698 ÷	1163 kW
▶ RS 130	372/930 ÷	1512 kW
▶ RS 190	470/1279 ÷	2290 kW

The RS series of burners covers a firing range from 81 to 2290 kW, and they have been designed for use in hot or superheater water boilers, hot air or steam generators, diathermic oil boilers.

Operation is "two stage"; the burners are fitted with an electronic device STATUS PANEL, which supplies complete diagnostic: hour meter, ignition meter, identification of trouble shooting.

Optimisation of sound emissions is guaranteed by the use of fans with forward inclined blades and sound deadening material incorporated in the air suction circuit.

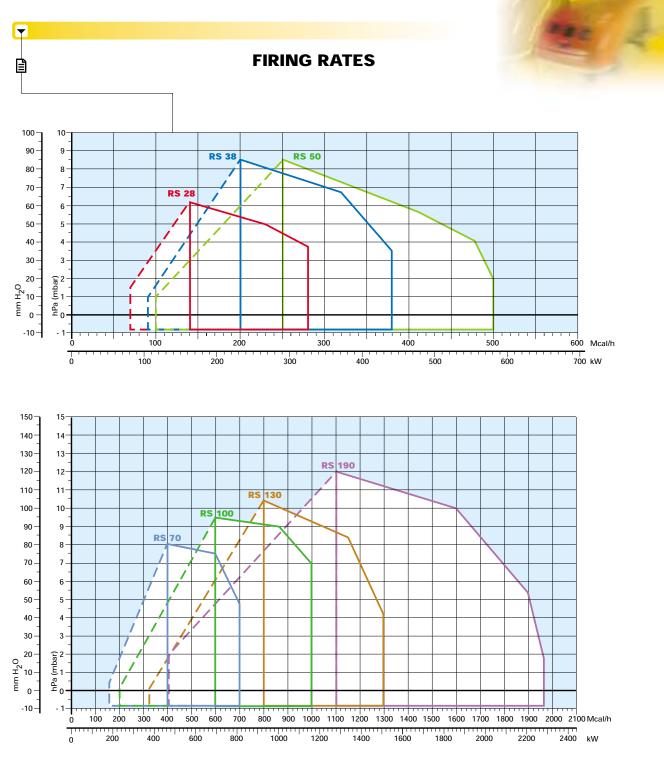
The elevated performance of the fans and combustion head, guarantee flexibility of use and excellent working at all firing rates.

The exclusive design ensures reduced dimensions, simple use and maintenance. A wide range of accessories guarantees elevated working flexibility.

TECHNICAL DATA

Mod	lel		▼ RS 28	🕶 RS 38	▼ RS 38	▼ RS 50	▼ RS 70	▼ RS 100	🔻 RS 130	▼ RS 190
Burr	ner operation m	ode				Two	stage			
Mod	lulation ratio to	max. output				2 -	÷1			
Serv	ио- Туре			SQ	N90			LKS210		SQN31
mot	or Run time	s		1	2			15		15
Heat	t output	kW	81/163÷325	105/232÷440	105/232÷440	116/290÷581	192/465+814	232/698÷1163	372/930÷1512	470/1279÷229
nea	louipui	Mcal/h	70/140÷280	90/200÷378	90/200÷378	100/249÷500	165/400+700	200/600÷1000	320/800÷1300	405/1100÷197
Worl	king temperature	°C min./max.				0/	40			
Net c	alorific value gas G2	kWh/Nmc				1	0			
	sity gas G20	kg/Nmc				0,	71			
Out	out gas G20	Nmc/h	8/16÷32	10,5/23÷44	10,5/23÷44	11,6/29÷58	19/46,5÷81,4	23/70÷116	37/93÷151	47/128÷229
Net c	alorific value gas G2	5 kWh/Nmc				8	,6			
	sity gas G25	kg/Nmc				0,	78			
Out	out gas G25	Nmc/h	9,4/19÷38	12/27÷51	12/27÷51	13,5/34÷68	22/54÷95	27/81÷135	43/108÷176	55/149÷266
Net c	alorific value LPG ga	kWh/Nmc				2:	5,8			
Den	sity LPG gas	kg/Nmc				2,	02			
Out	out LPG gas	Nmc/h	3/6,5÷12,5	4/9÷17	4/9÷17	4,5/11÷23	7,4/18÷32	9/27÷45	14,4/36÷59	18/50÷89
Fan	-	Туре			Centrifug	al with reverse c	urve blades			Straight blade
Air t	emperature	Max. °C			-	6	0			
Elect	trical supply	Ph/Hz/V	1/50/230)~(±10%)		3N/50	/230-400~(±10%)	人 3/50/230~(±	10%) 🛆	
Auxili	iary electrical suppl	/ Ph/Hz/V				1/50/230	~ (±10%)			
Cont	trol box	Туре				MM	I 813			
Tota	l electrical powe	r kW	0,37	0,6	0,56	0,75	1,4	1,8	2,6	5,5
Auxili	iary electrical powe	kW	0,12	0,12	0,12	0,12	0,3	0,3	0,4	1
Prot	ection level	IP				4	4			
Moto	or electrical powe	r kW	0,25	0,42	0,45	0,65	1,1	1,5	2,2	4,5
Rate	d motor curren	t A	2,1	2,9	2 - 1,2	3 - 1,7	4,8 - 2,8	5,9 - 3,4	8,8 - 5,1	15,8 - 9,1
Mot	or start current	Α	4,8	11	9,5 - 5,5	13,8 - 8	25 - 14,6	27,7 - 16	57,2 - 33,2	126 - 73
Moto	or protection leve	I IP				5	4			
Ignit	tion	V1 - V2				230V -	1x8 kV			
	sformer	l1 - l2				1A - 2	20 mA			
Ope	ration				Inte	rmittent (at least	one stop every	24 h)		
Sou	nd pressure	dBA	68	70	70	72	75	77	78,5	83
Sou	nd output	w								
COE	Emission	mg/kWh				<	40			
NOx	Emission	mg/kWh				< 1	130			
Dire	ctive	_				90/396 - 89/336 -	73/23 - 92/42 EE	С		
Cont	forming to					EN	676			
	ification		CE 0085AP0733	CE 0085	AP0734	CE 0085AP0735	CE 0085AP0944	CE 0085AP0945	CE 0085AP0946	CE 0085AT004

Reference conditions:


Ŧ

₿

Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall

This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful working field for choosing the burner

1 1st stage operating range

Γ

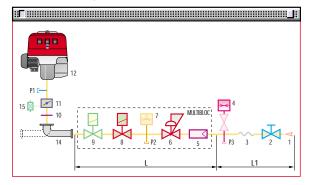
Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

FUEL SUPPLY

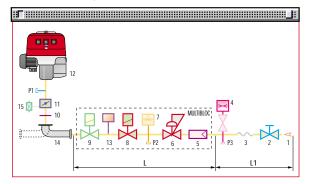
GAS TRAINS

The burners are fitted with a butterfly valve to regulate the fuel delivery on 1st and 2nd stage, controlled by a variable profile cam servomotor.

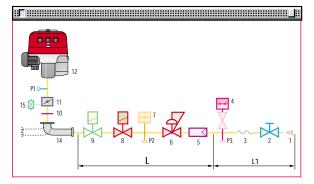
Fuel can be supplied either from the right or left hand sides.


The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

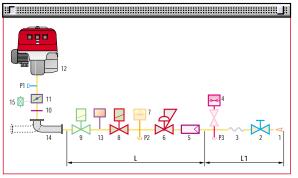
The gas train can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).



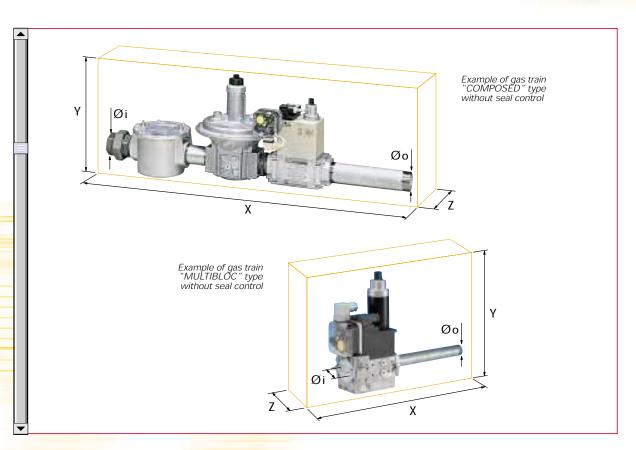
Example of the variable profile cam on RS 70-100-130 burners.


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control



COMPOSED gas train without seal control



s input pipework inual valve ti-vibration joint essure gauge with pushbutton cock. eer essure regulator (vertical) nimum gas pressure switch safety solenoid (vertical)
ti-vibration joint essure gauge with pushbutton cock. eer essure regulator (vertical) nimum gas pressure switch
essure gauge with pushbutton cock. eer essure regulator (vertical) nimum gas pressure switch
er essure regulator (vertical) nimum gas pressure switch
essure regulator (vertical) nimum gas pressure switch
nimum gas pressure switch
5 1
safety solenoid (vertical)
regulation solenoid (vertical) o settings: - firing output (rapid opening) - maximum output (slow opening)
sket and flange supplied with the burner
s adjustment butterfly valve
rner
al control mechanism for valves 8-9. According standard EN 676, the seal control is compulsory burners with maximum output above 1200 kW.
s train-burner adapter.
iximum gas pressure switch
mbustion head pressure
essure downstream from the regulator
essure downstream from the regulator
0
>

COMPOSED gas train with seal control

Y

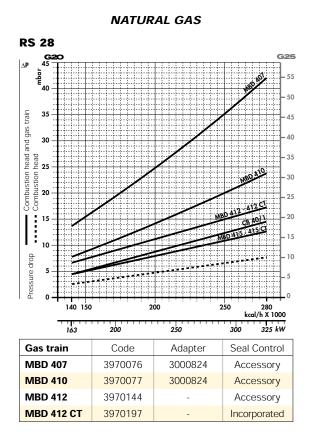
Gas trains are approved by standard EN 676 together with the burner.

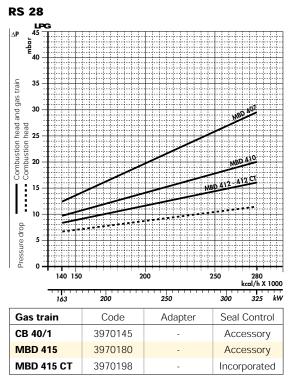
▼

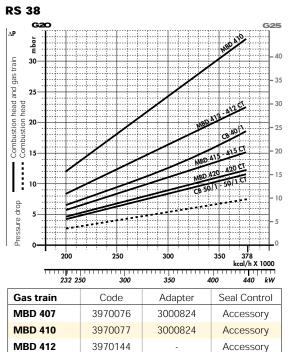
The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RS burners, intake and outlet diameters and seal control if fitted.

Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.


	Name	Code	Øi	Øo	X mm	Y mm	Z mm	Seal Control
	MBD 407	3970076	3/4 "	3/4 "	371	196	120	-
MULTIBLOC GAS TRAINS	MBD 410	3970077	1″	3/4 "	405	217	145	
	MBD 412	3970144	1″1/4	1″1/2	433	217	145	
	MBD 412 CT	3970197	1″1/4	1″1/2	433	217	262	Incorporated
	MBD 415	3970180	1″1/2	1″1/2	523	250	100	
	MBD 415 CT	3970198	1″1/2	1″1/2	523	250	227	Incorporated
	MBD 420	3970181	2″	2″	523	300	100	
	MBD 420 CT	3970182	2″	2″	523	300	227	Incorporated
COMPOSED GAS TRAINS	CB 40/1	3970145	1″1/2	1″1/2	891	261	195	
	CB 50/1	3970146	2″	2″	986	328	250	
	CB 50/1 CT	3970160	2″	2″	986	328	320	Incorporated
	CBF 65/1	3970147	DN 65	DN 65	874	356	285	
	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	Incorporated
	CBF 80/1	3970148	DN 80	DN 80	934	416	285	-
	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	Incorporated
	CBF 100/1	3970149	DN 100	DN 100	1054	501	350	-
	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	Incorporated




PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

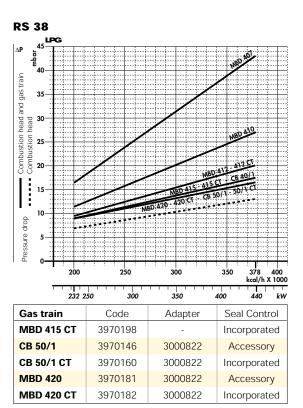
The value thus calculated represents the minimum required input pressure to the gas train.

MBD 412 CT

CB 40/1

MBD 415

3970197


3970145

3970180

Incorporated

Accessory

Accessory

LPG

Y

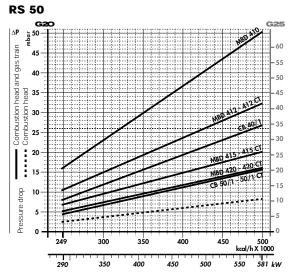
NATURAL GAS

•

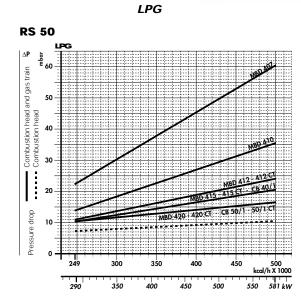
RS 70

Combustion head and gas train

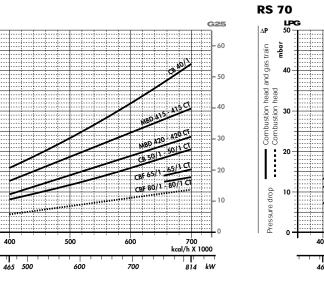
Pressure drop

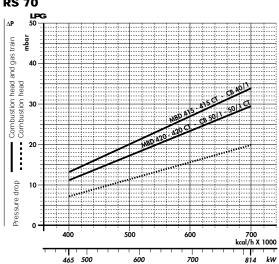

10

0

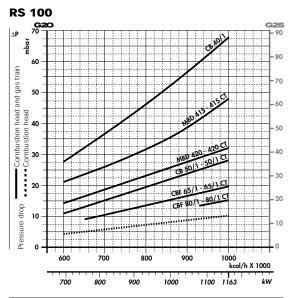

400

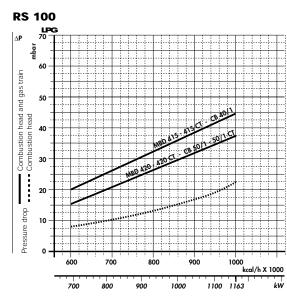
ΔP


620


		1		
Gas train	Code	Adapter	Seal Control	
MBD 407	3970076	3000824	Accessory	
MBD 410	3970077	3000824	Accessory	
MBD 412	3970144	-	Accessory	
MBD 412 CT	3970197	-	Incorporated	
CB 40/1	3970145	-	Accessory	
MBD 415	3970180	-	Accessory	

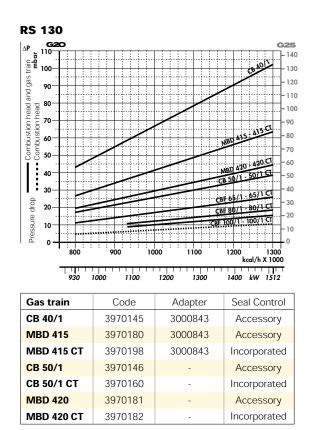
Gas train	Code	Adapter	Seal Control	
MBD 415 CT	3970198	-	Incorporated	
CB 50/1	3970146	3000822	Accessory	
CB 50/1 CT	3970160	3000822	Incorporated	
MBD 420	3970181	3000822	Accessory	
MBD 420 CT	3970182	3000822	Incorporated	

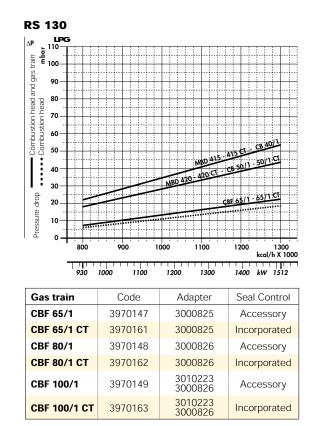

Gas train	Code	Adapter	Seal Control	
CB 40/1	3970145	3000843	Accessory	
MBD 415	3970180	3000843	Accessory	
MBD 415 CT	3970198	3000843	Incorporated	
CB 50/1	3970146	- Accesso		
CB 50/1 CT	3970160	-	Incorporated	
MBD 420	3970181	-	Accessory	


Gas train	Code	Adapter	Seal Control	
MBD 420 CT	3970182	-	Incorporated	
CBF 65/1	3970147	3000825	Accessory	
CBF 65/1 CT	3970161	3000825	Incorporated	
CBF 80/1	3970148	3000826	Accessory	
CBF 80/1 CT	3970162	3000826 Incorporate		

RIELIO

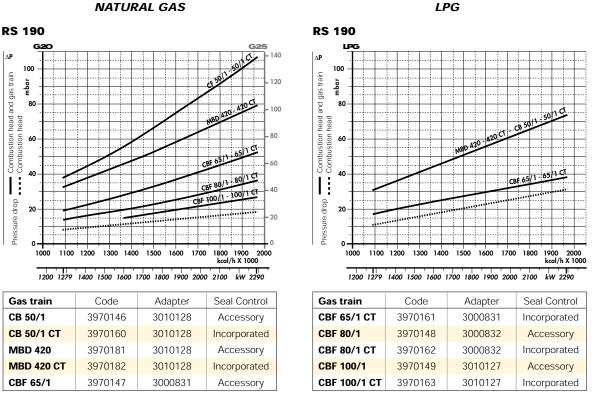
NATURAL GAS




Gas train	Code	Adapter	Seal Control
CB 40/1	3970145	3000843	Accessory
MBD 415	3970180	3000843	Accessory
MBD 415 CT	3970198	3000843	Incorporated
CB 50/1	3970146	-	Accessory
CB 50/1 CT	3970160	-	Incorporated
MBD 420	3970181	-	Accessory

LPG

Gas train	Code	Adapter	Seal Control
MBD 420 CT	3970182	-	Incorporated
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3970162	3000826	Incorporated



▼

NATURAL GAS

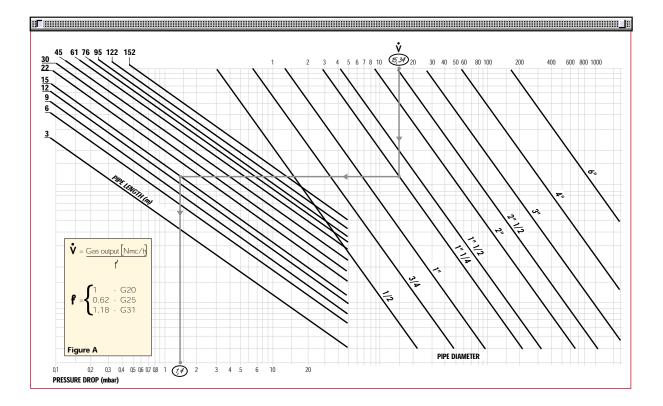
note

▼

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.


The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale ($\dot{\mathbf{V}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

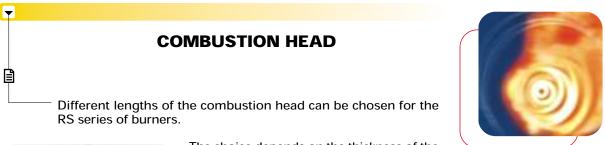
By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

- Example:- gas usedG25- gas output9.51 mc/h- pressure at the gas meter20 mbar- gas line length15 m- conversion coefficient0.62 (see figure A)- equivalent methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix} = 15.34$ mc/h
- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

The ventilation circuit produces low noise levels with high performance pressure and air output, inspite of the compact dimensions.

B

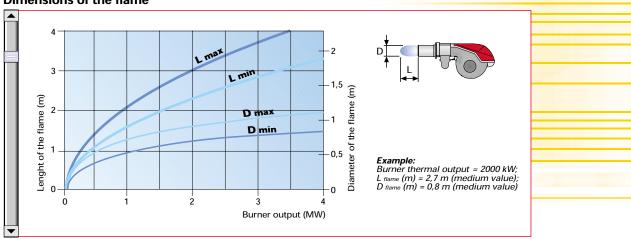

Example of the air damper on RS 28 - 38 - 50 burners

Except for the RS 190 model, the use of reverse

curve blades and sound-proofing material keeps noise level very low. In the RS 190 model, noise has been reduced by the special design of the air suction circuit.

A variable profile cam connects the fuel and air regulations, to obtain a perfect control of combustion during the change of stage. When the burner is not operating the servomotor closes completely the air damper to reduce heat dispersion from the boiler.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.



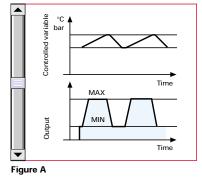
The choice depends on the thickness of the front panel and the type of boiler.

Depending on the type of generator, check that the penetration of the head into the combustion chamber is correct.

The internal positioning of the combustion head can easily be adjusted to the maximum defined output by adjusting a screw fixed to the flange.

Example of a RS burner combustion head

Dimensions of the flame

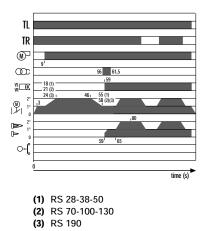


ADJUSTMENT

BURNER OPERATION MODE

On "two stage" operation, the burner gradually adapts the output to the requested level, by varying between two pre-set levels (see figure A).

"Two stage " operation



Example of "STATUS PANEL"

The RS burners are equipped of an exclusive electronic device "STATUS PANEL" or "LED PANEL" that, in every moments, shows all burners operational modes and finds eventual anomalies during the operational cycle.

FIRING

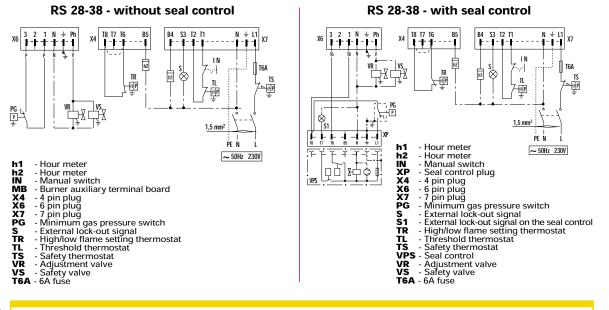
RS 28-38-50-70-100-130-190

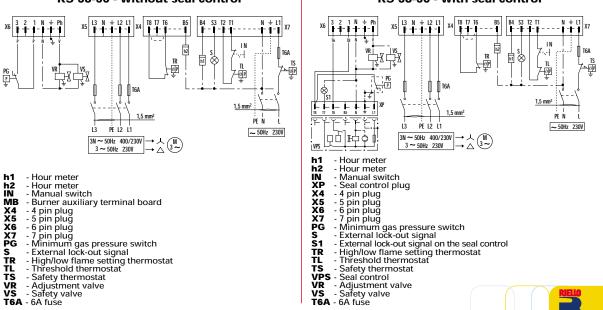
•	The TL remote control closes; servomotor starts after about 3".
0"	The control box starting cycle begins.
9″	Fan motor starts. The air damper is positioned to 2nd
	stage.
18/21/24″	Pre-ventilation stage.
46"	Servomotor rotates.
55"	The air damper and the gas butterfly valve are
	positioned to 1st stage output (for RS 28-38-50).
56″	Ignition electrode sparks.
58"	The air damper and the gas butterfly valve are
	positioned to 1st stage output (for RS 70-100-130-190).
59"	Firing; the VS safety valve and the VR adjustment
	valve open.
65″	Output can be increased.
80"	The control box starting cycle ends.

Y

Y

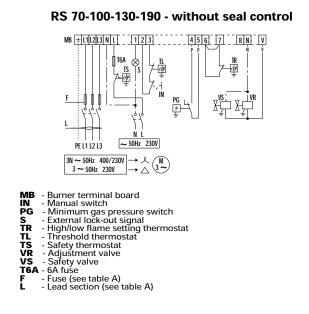
B

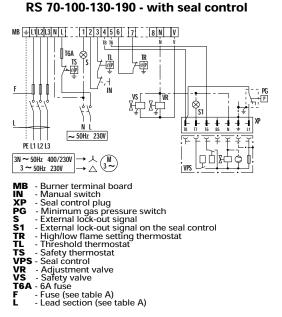

ELECTRICAL CONNECTIONS To be made by the installer


Electrical connections must be made by qualified and skilled personnel, according to the local regulations.

Example of the terminal board for electrical connections for the RS 70-100-130-190 models

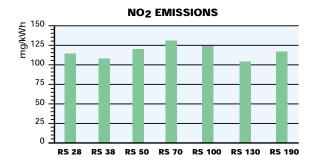
" TWO STAGE" OPERATION - Single-phase power supply

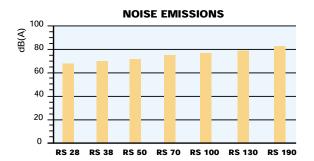

" TWO STAGE" OPERATION - Triple-phase power supply



RS 38-50 - without seal control

RS 38-50 - with seal control


The following table shows the supply lead sections and the type of fuse to be used.


Model	▼RS 28	▼RS 38	▼ R	S 38	▼ R	S 50	▼ RS	5 70	▼RS	5 100	▼ RS	5 130	▼ RS	5 190
	230V	230V	230V	400V	230V	400V	230V	400V	230V	400V	230V	400V	230V	400V
FΑ	Τ6	T6	T6	T6	T6	T6	T10	T6	T16	T10	T16	T10	T25	T20
L mm ²	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	2,5	2,5

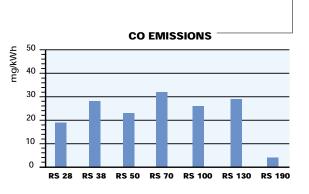
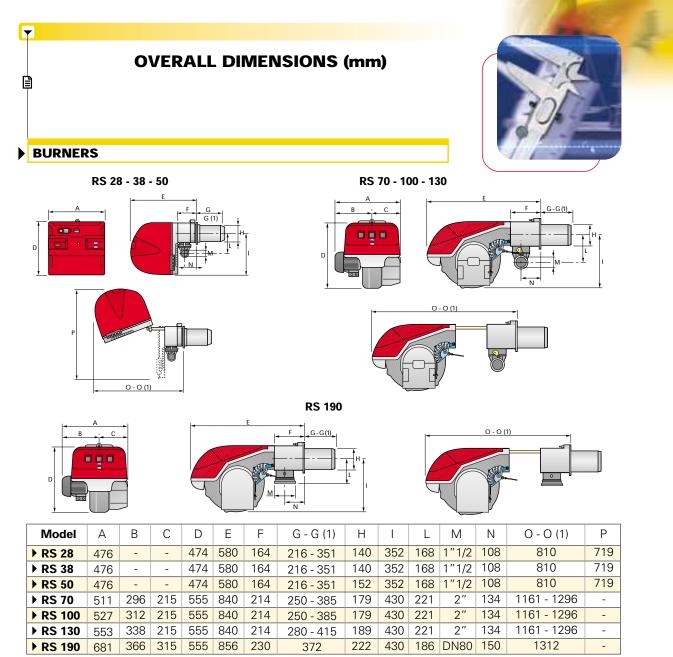
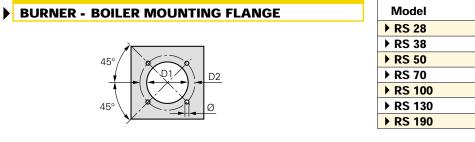

EMISSIONS

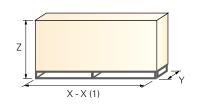
Table A



The emission data has been measured in the various models at maximum output, according to EN 676 standard.


▼

T


B

(1) "Extended" head model

PACKAGING

Model	D1	D2	Ø	
▶ RS 28	160	224	M8	
▶ RS 38	160	224	M8	
▶ RS 50	160	224	M8	
▶ RS 70	185	275 - 325	M12	
▶ RS 100	185	275 - 325	M12	
▶ RS 130	195	275 - 325	M12	
▶ RS 190	230	325 - 368	M16	

Model	X - X (1)	Y	Z	kg
▶ RS 28	872 - 1007	540	550	38
▶ RS 38	872 - 1007	540	550	40
▶ RS 50	872 - 1007	540	550	41
▶ RS 70	1190 - 1325	692	740	70
▶ RS 100	1190 - 1325	692	740	73
▶ RS 130	1190 - 1325	692	740	76
▶ RS 190	1250	785	725	82

(1) "Extended" head model

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.
- Refit the burner casing to the slide bars.
- Close the burner, sliding it up to the flange.

Y

B

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.
- Turn the motor to check rotation direction (if it is a three-phase motor).
- Perform a first ignition calibration on the gas train.
- On start up, check:
- Gas pressure at the combustion head (to max. and min. output)
- Combustion quality, in terms of unburned substances and excess air.

ACCESSORIES

3010119

3010196

Extended heads

Ŧ

B

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

RS 130

RS 190

	Combustion head extension kits							
Burner	`Standard head' length (mm)	'Extended head' length (mm)	Kit code					
RS 28	216	351	3010076					
RS 38	216	351	3010077					
RS 50	216	351	3010078					
RS 70	250	385	3010117					
RS 100	250	385	3010118					

280

372

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

Head length reduction kit					
Burner	Spacer thickness S (mm)	Kit code			
RS 28 - 38 - 50	90	3010095			
RS 70 - 100 - 130	135	3010129			
RS 190	110	3000722			

415

530

Continuous ventilation kit

If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

Continuous ventilation	kit
Burner	Kit code
RS 28 - 38 - 50	3010094
RS 70 - 100 - 130 - 190	3010094

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

Sound proofing box					
Burner	Box type	Box code			
RS 28 - 38 - 50	C2	3000777			
RS 70 - 100 - 130 - 190	C3	3000778			

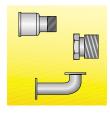
LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:

	LPG kit	
Burner	Kit code for 'standard head'	Kit code for 'extended head'
RS 28	3010079	3010080
RS 38	3010081	3010082
RS 50	3010083	3010084
RS 70	3010097	3010098
RS 100	3010099	3010100
RS 130	3010101	3010102
RS 190	3010166	-

▼

GAS TRAIN ACCESSORIES


Adapters

T

₿

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

- -

Adapters						
Burner	Gas train	Dimensions	Adapter code			
RS 28	MBD 407 - 410	3/4" 1" 1/2	3000824			
RS 38	MBD 407 - 410	3/4" 1" 1/2	3000824			
10.00	MBD 420 - CB 50/1	2" 1" 1/2	3000822			
RS 50	MBD 407 - 410	3/4" 1" 1/2	3000824			
N3 50	MBD 420 - CB 50/1	2" 1" 1/2	3000822			
	MBD 415 - CB 40/1	1" 1/2 2"	3000843			
RS 70	CBF 65/1	DN 65 2"1/2 2" 2" 2"	3000825			
	CBF 80/1	DN 80 2"1/2 2"	3000826			
	MBD 415 - CB 40/1	1" 1/2 2"	3000843			
RS 100	CBF 65/1	DN 65 2"1/2 2"	3000825			
	CBF 80/1	DN 80 2"1/2 2"	3000826			
	MBD 415 - CB 40/1	1" 1/2 2"	3000843			
DC 100	CBF 65/1	DN 65 2"1/2	3000825			
RS 130	CBF 80/1	DN 80 2"1/2 2"	3000826			
	CBF 100/1	DN 100 DN 80	3010223			
		DN 80 2"1/2 2"	3000826			
	MBD 420 - CB 50/1	DN 80 DN 65 2"1/2 2" 2"	3010128			
	CBF 65/1	DN 65	3000831			
RS 190	CBF 80/1	DN 80	3000832			
	CBF 100/1	DN 100	3010127			

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The sealing control is type VPS 504.

Seal control kit					
Burner	Gas train	Kit code			
RS 28	MBD 407 - 410 - 412 - 415 - CB 40/1	3010123			
RS 38	MBD 407 - 410 - 412 - 415 - 420 - CB 40/1 - 50/1	3010123			
RS 50	MBD 407 - 410 - 412 - 415 - 420 - CB 40/1 - 50/1	3010123			
RS 70	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1 - 80/1	3010123			
RS 100	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1 - 80/1	3010123			
RS 130	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1 - 80/1 - 100/1	3010123			
RS 190	MBD 420 - CB 50/1 - CBF 65/1 - 80/1 - 100/1	3010123			

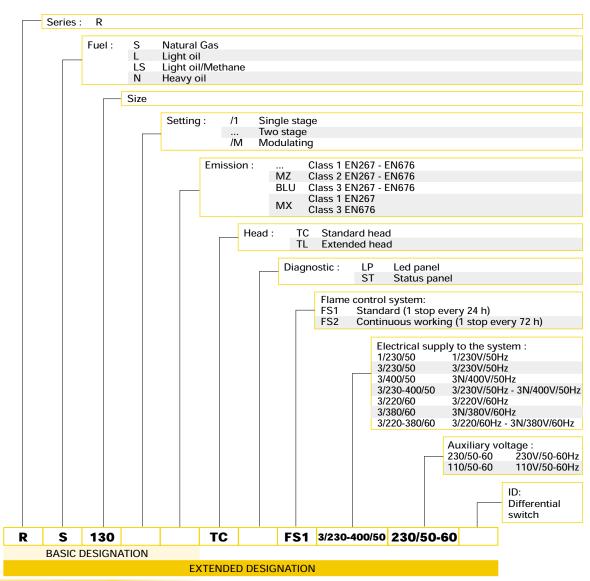
▾

Stabiliser spring

Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range

Stabiliser springs					
Gas train	Spring	Code			
CBF 65/1 - CBF 80/1	Red da 25 a 55 mbar	3010133			
CBF 100/1	Red da 25 a 55 mbar	3010134			
CBF 65/1 - CBF 80/1	Black da 60 a 110 mbar	3010135			
CBF 100/1	Black da 60 a 110 mbar	3010136			
CBF 65/1 - CBF 80/1	Pink da 90 a 150 mbar	3090456			
CBF 100/1	Pink da 90 a 150 mbar	3090489			

Please refer to the technical manual for the correct choice of spring.


SPECIFICATION

A specific index guides your choice of burner from the various models available in the RS series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES R BURNERS

Y

B

LIST OF AVAILABLE MODELS

RS 28	тс	LP	FS1	1/230/50	230/50-60	1	RS 70	тс	LP	FS1	3/230-400/50	230/50-60	
RS 28	тс	LP	FS1	1/230/50	230/50-60	ID	RS 70	тс	LP	FS1	3/230-400/50	230/50-60	ID
RS 28	тс	ST	FS1	1/230/50	230/50-60		RS 70	тс	ST	FS1	3/230-400/50	230/50-60	
RS 28	тс	ST	FS1	1/230/50	230/50-60	ID	RS 70	тс	ST	FS1	3/230-400/50	230/50-60	ID
RS 28	ΤL	LP	FS1	1/230/50	230/50-60		RS 70	ΤL	LP	FS1	3/230-400/50	230/50-60	
RS 28	ΤL	LP	FS1	1/230/50	230/50-60	ID	RS 70	ΤL	LP	FS1	3/230-400/50	230/50-60	ID
RS 28	ΤL	ST	FS1	1/230/50	230/50-60		RS 70	ΤL	ST	FS1	3/230-400/50	230/50-60	
RS 28	ΤL	ST	FS1	1/230/50	230/50-60	ID	RS 70	ΤL	ST	FS1	3/230-400/50	230/50-60	ID
RS 38	тс	LP	FS1	1/230/50	230/50-60		RS 100	тс	LP	FS1	3/230-400/50	230/50-60	
RS 38	тс	LP	FS1	1/230/50	230/50-60	ID	RS 100	тс	LP	FS1	3/230-400/50	230/50-60	ID
RS 38	TC	LP	FS1	3/230-400/50	230/50-60		RS 100	TC	ST	FS1	3/230-400/50	230/50-60	
RS 38	TC	LP	FS1	3/230-400/50	230/50-60	ID	RS 100	TC	ST	FS1	3/230-400/50	230/50-60	ID
RS 38	тс	ST	FS1	1/230/50	230/50-60		RS 100	ΤL	LP	FS1	3/230-400/50	230/50-60	
RS 38	тс	ST	FS1	1/230/50	230/50-60	ID	RS 100	ΤL	LP	FS1	3/230-400/50	230/50-60	ID
RS 38	тс	ST	FS1	3/230-400/50	230/50-60		RS 100	ΤL	ST	FS1	3/230-400/50	230/50-60	
RS 38	тс	ST	FS1	3/230-400/50	230/50-60	ID	RS 100	ΤL	ST	FS1	3/230-400/50	230/50-60	ID
RS 38	TL	LP	FS1	1/230/50	230/50-60								
RS 38	ΤL	LP	FS1	1/230/50	230/50-60	ID	RS 130	тс	LP	FS1	3/230-400/50	230/50-60	
RS 38	ΤL	LP	FS1	3/230-400/50	230/50-60		RS 130	тс	LP	FS1	3/230-400/50	230/50-60	ID
RS 38	ΤL	LP	FS1	3/230-400/50	230/50-60	ID	RS 130	тс	ST	FS1	3/230-400/50	230/50-60	
RS 38	ΤL	ST	FS1	1/230/50	230/50-60		RS 130	тс	ST	FS1	3/230-400/50	230/50-60	ID
RS 38	ΤL	ST	FS1	1/230/50	230/50-60	ID	RS 130	ΤL	LP	FS1	3/230-400/50	230/50-60	
RS 38	ΤL	ST	FS1	3/230-400/50	230/50-60		RS 130	ΤL	LP	FS1	3/230-400/50	230/50-60	ID
RS 38	ΤL	ST	FS1	3/230-400/50	230/50-60	ID	RS 130	ΤL	ST	FS1	3/230-400/50	230/50-60	
							RS 130	ΤL	ST	FS1	3/230-400/50	230/50-60	ID
RS 50	тс	LP	FS1	3/230-400/50	230/50-60								
RS 50	тс	LP	FS1	3/230-400/50	230/50-60	ID	RS 190	тс	ST	FS1	3/230-400/50	230/50-60	
RS 50	тс	ST	FS1	3/230-400/50	230/50-60		RS 190	тс	ST	FS1	3/230-400/50	230/50-60	ID
RS 50	тс	ST	FS1	3/230-400/50	230/50-60	ID							
RS 50	ΤL	LP	FS1	3/230-400/50	230/50-60								
RS 50	ΤL	LP	FS1	3/230-400/50	230/50-60	ID							
RS 50	ΤL	ST	FS1	3/230-400/50	230/50-60								
RS 50	ΤL	ST	FS1	3/230-400/50	230/50-60	ID	Other v	versi	ions	are a	vailable on r	equest	
												-	

PRODUCT SPECIFICATION

Burner:

▼

Monoblock forced draught gas burner with two stage operation, fully automatic, made up of: - Air suction circuit lined with sound-proofing material

- Fan with reverse curve blades (straight blades on the 190 model) high performance with low sound emissions
- Air damper for air flow setting and butterfly valve for regulating fuel output on 1st and 2nd stage controlled by a servomotor with variable cam
- Starting motor at 2800 rpm, three-phase 400V with neutral, 50Hz (available also single-phase, 230V, 50Hz for the RS 28 and 38 models)
- Combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
- Flame control panel, with lock-out pilot light and lock-out reset button
- Electronic control device: STATUS PANEL or LED PANEL
- Burner on/off selection switch
- 1st 2nd stage manual switch
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 44 electric protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with: - Filter

- Filter - Stabiliser
- Minimum gas pressure switch
- Safety valve
- Valve seal control (for output > 1200 kW)
- One stage working valve with ignition gas output regulator.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- Wiring loom fittings for the electrical connection (RS 28 38 50)
- 2 slide bar extensions (for extended head models and RS 190 model)
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Head extension kit
- Head length reduction kit
- Continuous ventilation kit
- Sound-proofing box
- LPG kit
- Gas train adapter
- Seal control kit
- Stabiliser spring.

Lineagrafica

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

MODULATING GAS BURNERS ► RS/M SERIES ► RS 28/M

CE

S	▶ RS 28/M	52/163÷ 325 kW
	▶ RS 38/M	70/232÷ 440 kW
	▶ RS 50/M	85/290÷ 580 kW
	▶ RS 70/M	135/465÷ 814 kW
	▶ RS100/M	150/698÷1163 kW
	▶ RS 130/M	160/930÷1512 kW
	▶ RS 190/M	470/1279÷2290 kW

The RS/M series of burners covers a firing range from 52 to 2290 kW, and they have been designed for use in hot water boilers or superheaters, hot air or steam generators, diathermic oil boilers.

Operation can be "two stage progressive" or, alternatively, "modulating" with the installation of a PID logic regulator and respective probes.

RS/M series burners guarantees high efficiency levels in all the various applications, thus reducing fuel consumption and running costs.

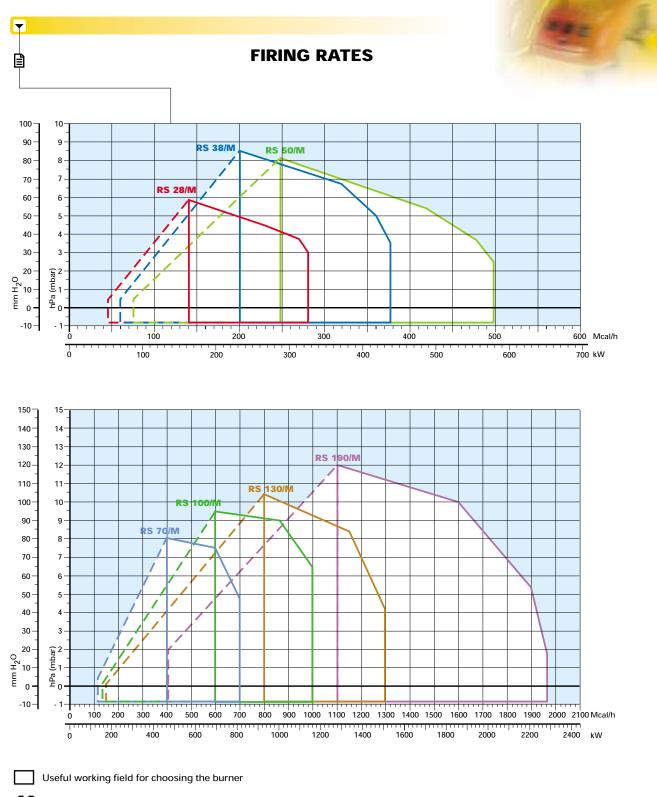
Optimisation of sound emissions is guaranteed by the use of fans with forward inclined blades and sound deadening material incorporated in the air suction circuit. The exclusive design ensures reduced dimensions, simple use and maintenance. A wide range of accessories guarantees elevated working flexibility.

Ē

TECHNICAL DATA

	Model		▼ RS28/M	▼ RS38/M	▼ RS50/M	▼ RS70/M	▼ RS100/M	▼ RS130/M	▼ RS190/M
	Burner operation mo	de			Modulating (with	regulator and pr	obes accessories	.)	
	Modulation ratio at r					6 ÷ 1		,	
	Servo- Type	nax. output		SQN90			SO	N31	
	motor Run time	s		24				2	
		kW	52/163÷325	70/232÷440	85/290÷580	135/465÷814	150/698÷1163	160/930÷1512	470/1279÷2290
	Heat output	Mcal/h	45/140÷280	60/200÷378	73/249÷499	116/400÷700	129/600÷1000	138/800÷1300	405/1100÷1970
	Working temperature			00/200:370	13/243.433	0/40	123/0000 1000	130/000-1300	403/1100-13/0
	Net calorific value gas G20					10			
	Density gas G20	kg/Nmc				0,71			
	Output gas G20	Nmc/h	5/16÷32	7/23÷44	8.5/29÷58	13,5/46,5÷81,4	15/70÷116	16/93÷151	47/128÷229
	Net calorific value gas G25		0/10/02	7720111	0,0720100	8.6	10,70,110	10,00,101	477 120 220
	Density gas G25	kg/Nmc				0,78			
	Output gas G25	Nmc/h	6/19÷38	8/27÷51	10/34÷68	16/54÷95	17/81÷135	19/108÷176	55/149÷266
	Net calorific value LPG gas	kWh/Nmc	0/13.30	0/27:51	10/ 54 : 00	25.8	17/01:155	13/100 170	33/ 143 - 200
	Density LPG gas	kg/Nmc				2,02			
-	Output LPG gas	Nmc/h	2/6,5÷12,5	3/9÷17	4/11÷23	5/18÷32	6/27÷45	6/36÷59	18/50÷89
	Fan	Туре	2/0,3 12,3					0/30.33	Straight blades
	Air temperature	nype Max. °C		L.	Centrifugal with reverse curve blades 60				
	Electrical supply	Ph/Hz/V	1/50/230~(±10%)		2N/6	00 0/230-400~(±10%)	2/50/220 (L100/) A	
	Auxiliary electrical supply	Ph/Hz/V Ph/Hz/V	1/ 30/ 230~(±10/8)			1/50/230 ~ (±10%)	•	±10%) Δ	
	Control box	Туре				33 (Intermittent w			
			0.97	0,56	0,75		J,	2.6	
	Total electrical power		0,37			1,4	1,8		5,5 1
	Auxiliary electrical power	kW IP	0,12	0,12	0,12	0,3 44	0,3	0,4	l
;	Protection level		0.05	0.45	0.05		4.5		4.5
	Motor electrical power		0,25	0,45	0,65	1,1	1,5	2,2	4,5
	Rated motor current		2,1	2 - 1,2	3 - 1,7	4,8 - 2,8	5,9 - 3,4	8,8 - 5,1	15,8 - 9,1
i		A	4,8	9,5 - 5,5	13,8 - 8	25 - 14,6	27,7 - 16	57,2 - 33,2	126 - 73
	Motor protection level					54			
	Ignition transformer	V1 - V2				230V - 1x8 kV			
		11 - 12				1A - 20 mA			
	Operation				ne stop every 24 l		• ·	-	
	Sound pressure	dBA	68	70	72	75	77	78,5	83
	Sound output	W							
	CO Emission	mg/kWh				< 40			
	NOx Emission	mg/kWh			00/075	< 130			
	Directive				90/396 -	89/336 - 73/23 - 9	2/42 EEC		
	Conforming to					EN 676	05 0005 0 00000		05 0005 0700 0
	Certification			CE 0085AQ0709			CE 0085AQ0708		CE 0085AT0042

Reference conditions:


T

Ē

Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed.

This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

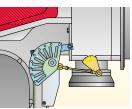
Modulation range

Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

RIELO

FUEL SUPPLY

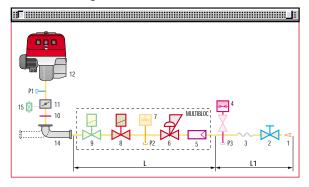
GAS TRAINS

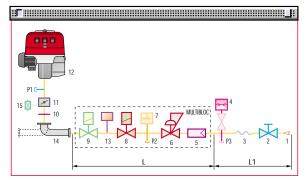

The burners are fitted with a butterfly valve to regulate the fuel, controlled by a variable profile cam servomotor. Fuel can be supplied either from the right or left hand sides.

A maximum gas pressure switch stops the burner in case of excess pressure in the fuel line.

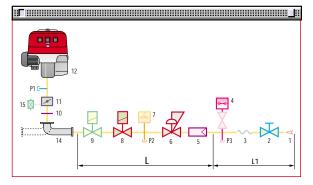
The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

pressure in the supply line. The gas train can be "Multibloc " type (containing the main components in a single unit) or "Composed" type (assembly of the single components).

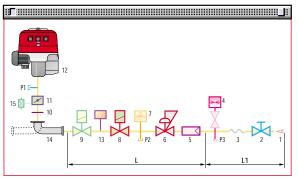



Example of the variable profile cam on RS 70-100-130/M burners.

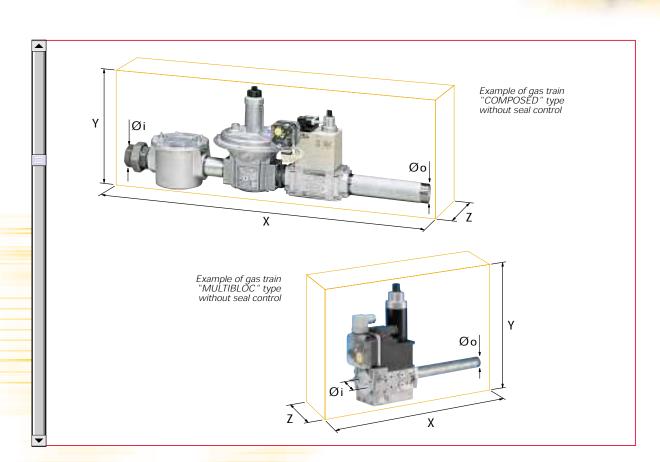
Example of the variable profile cam on RS 190/M burners.


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control



COMPOSED gas train without seal control


1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock.
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Gas adjustment butterfly valve
12	Burner
13	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW.
14	Gas train-burner adapter.
15	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer' s responsibility

COMPOSED gas train with seal control

₿

Ŧ

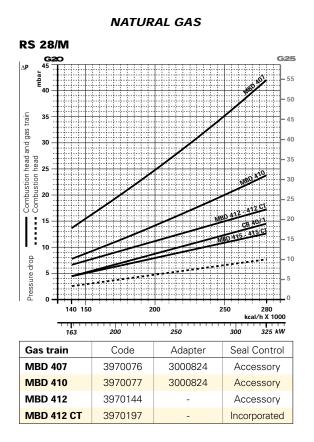
Gas trains are approved by standard EN 676 together with the burner.

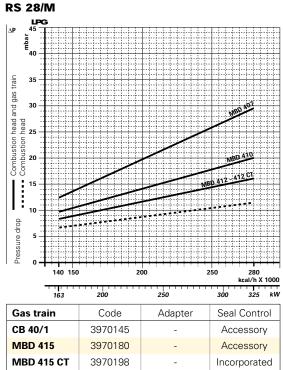
▼

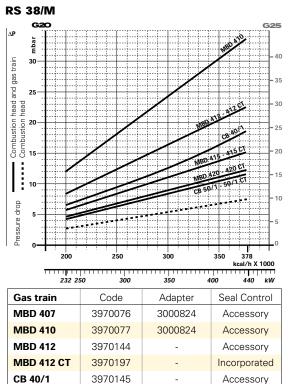
The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RS/M burners, intake and outlet diameters and seal control if fitted.

Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

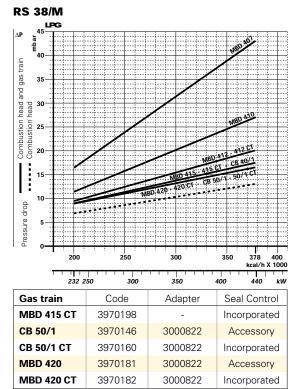

	Name	Code	Øi	Øo	X mm	Y mm	Z mm	Seal Control
	MBD 407	3970076	3/4 "	3/4 "	371	196	120	-
ပ္ရ	MBD 410	3970077	1″	3/4"	405	217	145	-
MULTIBLOC GAS TRAINS	MBD 412	3970144	1″1/4	1″1/2	433	217	145	-
B	MBD 412 CT	3970197	1″1/4	1″1/2	433	217	262	Incorporated
AS1	MBD 415	3970180	1″1/2	1″1/2	523	250	100	-
ξů	MBD 415 CT	3970198	1″1/2	1″1/2	523	250	227	Incorporated
	MBD 420	3970181	2″	2″	523	300	100	-
	MBD 420 CT	3970182	2″	2″	523	300	227	Incorporated
	CB 40/1	3970145	1″1/2	1″1/2	891	261	195	-
	CB 50/1	3970146	2″	2″	986	328	250	-
۵.,	CB 50/1 CT	3970160	2″	2″	986	328	320	Incorporated
COMPOSED GAS TRAINS	CBF 65/1	3970147	DN 65	DN 65	874	356	285	-
	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	Incorporated
NON SAS	CBF 80/1	3970148	DN 80	DN 80	934	416	285	-
00	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	Incorporated
	CBF 100/1	3970149	DN 100	DN 100	1054	501	350	-
	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	Incorporated




PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

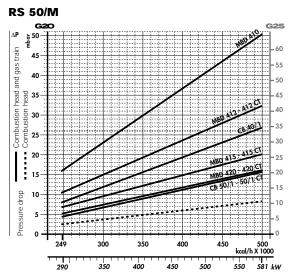
The value thus calculated represents the minimum required input pressure to the gas train.



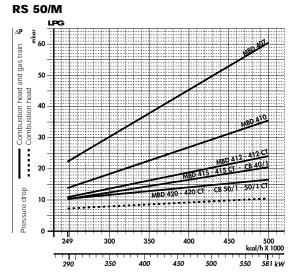
3970180

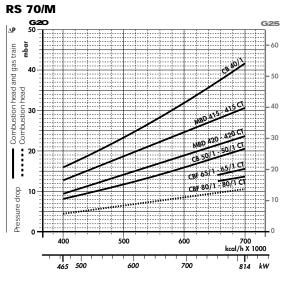
Accessory

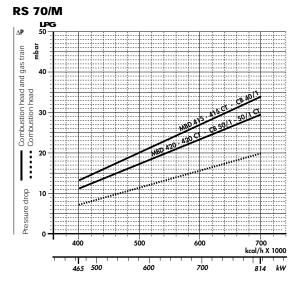
MBD 415



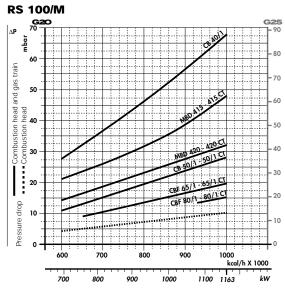
LPG


Y

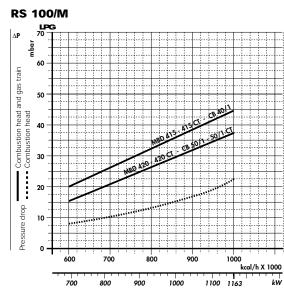

NATURAL GAS


Gas train	Code	Adapter	Seal Control
MBD 407	3970076	3000824	Accessory
MBD 410	3970077	3000824	Accessory
MBD 412	3970144	-	Accessory
MBD 412 CT	3970197	-	Incorporated
CB 40/1	3970145	-	Accessory
MBD 415	3970180	-	Accessory

Gas train	Code	Adapter	Seal Control
MBD 415 CT	3970198		Incorporated
CB 50/1	3970146	3000822	Accessory
CB 50/1 CT	3970160	3000822	Incorporated
MBD 420	3970181	3000822	Accessory
MBD 420 CT	3970182	3000822	Incorporated

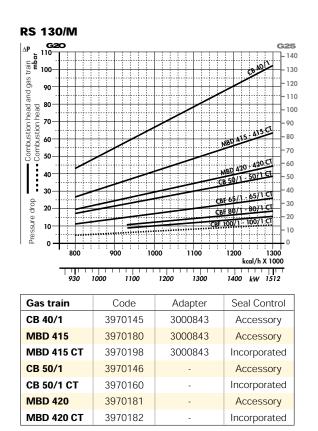


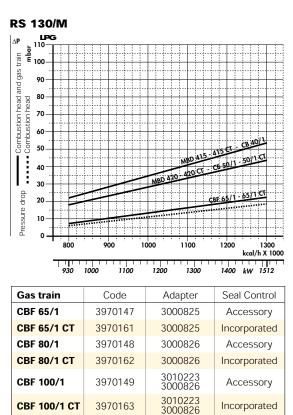
Gas train	Code	Adapter	Seal Control	
CB 40/1	3970145	3000843	Accessory	
MBD 415	3970180	3000843	Accessory	
MBD 415 CT	3970198	3000843	Incorporated	
CB 50/1	3970146	-	Accessory	
CB 50/1 CT	3970160	-	Incorporated	
MBD 420	3970181	-	Accessory	



Gas train	Code	Adapter	Seal Control
MBD 420 CT	3970182	-	Incorporated
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3970162	3000826	Incorporated

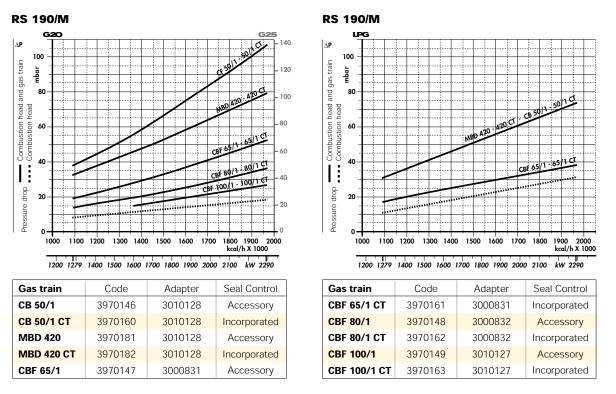
NATURAL GAS




Gas train	Code	Adapter	Seal Control	
CB 40/1	3970145	3000843	Accessory	
MBD 415	3970180	3000843	Accessory	
MBD 415 CT	3970198	3000843	Incorporated	
CB 50/1	3970146	-	Accessory	
CB 50/1 CT	3970160	-	Incorporated	
MBD 420	3970181	-	Accessory	

LPG

Gas train	Code	Adapter	Seal Control
MBD 420 CT	3970182	-	Incorporated
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3970162	3000826	Incorporated



▼

LPG

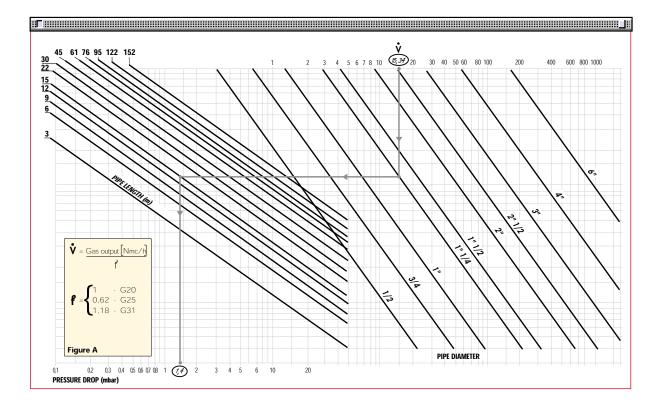
NATURAL GAS

▼

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.


The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\dot{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

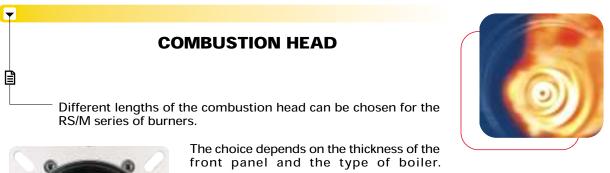
By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

- Example:- gas used
- gas output
- pressure at the gas meter
- gas line length
- conversion coefficientG25
9.51 mc/h
20 mbar
15 m
0.62 (see figure A)- equivalent methane output $\dot{\mathbf{V}} = \left[\frac{9.51}{0.62}\right] = 15.34$ mc/h
- once the value of 15.34 has been identified on the output scale ($\dot{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

The ventilation circuit produces low noise levels with high performance pressure and air output, inspite of the compact dimensions.

suction circuit.

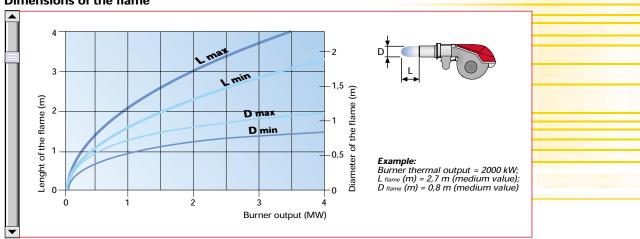


B

Example of the servomotor for gas setting

Except for the RS 190/M model, the use of reverse curve blades and sound-proofing material keeps extremely Inoise level very low. In the RS 190/M model, noise has been reduced by the special design of the air

A variable profile cam connects the fuel and air regulations, ensuring high fuel efficiency at all firing ranges. A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

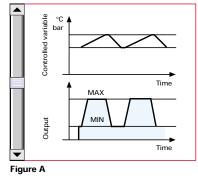


Depending on the type of generator, check that the penetration of the head into the combustion chamber is correct.

The internal positioning of the combustion head can easily be adjusted to the maximum defined output by adjusting a screw fixed to the flange.

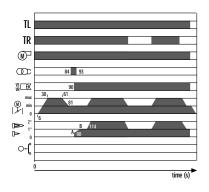
Example of a RS/M burner combustion head

Dimensions of the flame

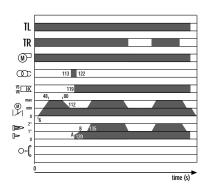


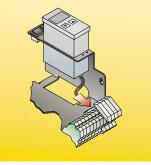
ADJUSTMENT

BURNER OPERATION MODE


On "two stage progressive" operation, the burner gradually adapts the output to the requested level, by varying between two pre-set levels (see figure A).

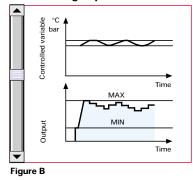
"Two stage progressive" operation




FIRING

RS 28/M - 38/M - 50/M

RS 70/M - 100/M - 130/M - 190/M

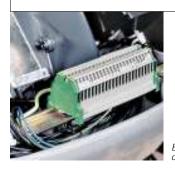


Example of a regulator

0"

In "modulating" operation, normally required in steam generators, in superheater boilers or diathermic oil burners, a specific regulator and probes are required. These are supplied as accessories that must be ordered separately. The burner can work for long periods at intermediate output levels (see figure B). "Modulating" operation

The TL remote control closes. The fan motor starts turning.

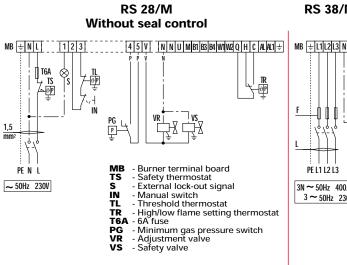

- 6" 30" The servomotor opens the air-damper.
- 30"- 61" Pre-ventilation with air delivery at MAX output.
- 61" 81" The air damper and the gas butterfly valve are positioned on MIN output
- 84" The ignition electrode sparks.
- 90" Firing : the VS safety valve and the VR adjustment valve open.
- 114" The start up cycle of the control box is concluded.
- 0" The TL remote control closes. The fan motor starts turning.
- 6" 48" The servomotor opens the air-damper.
- 48"- 80" Pre-ventilation with air delivery at MAX output.
- 80" 112" The air damper and the gas butterfly valve are
 - positioned on MIN output
- 113" The ignition electrode sparks.
- 119" Firing : the VS safety valve and the VR adjustment valve open.
- 135" The start up cycle of the control box is concluded.

The RS/M series of burners can have "two stage progressive" or "modulating" operation.

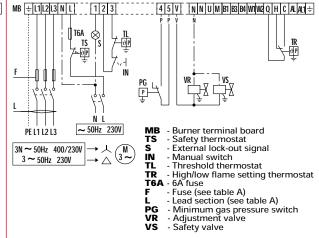
Ŧ

₿

ELECTRICAL CONNECTIONS To be made by the installer

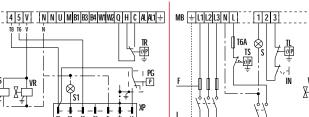

Y

Ē


Electrical connections must be made by qualified and skilled personnel, according to the local regulations.

Example of the terminal board for electrical connections for the RS 70-100-130-190/M models

"TWO STAGE PROGRESSIVE" OPERATION


RS 38/M - 50/M - 70/M - 100/M - 130/M - 190/M Without seal control

RS 38/M - 50/M - 70/M - 100/M - 130/M - 190/M

With seal control

RS 28/M With seal control

TR VS J₿Ç R Í S1 É d ∼ 50Hz 230V $(3\sim)$ →△ 1 VPS

4 5 V N N U M B1 B3 B4 W1 W2 Q H C AL AL1 ÷

MR

PEL1L2L3

3N ~ 50Hz 400/230V

3 ~ 50Hz 230V

- TS S
- Burner terminal board
 Safety thermostat
 External lock-out signal
 External lock-out signal on the seal control Manual switch - External lock-out signal
 - External lock-out signal on the sea
 Manual switch
 - Threshold thermostat
 - High/low flame setting thermostat
 TGA 6A fuse
 F - Fuse (see tet)

Ν

→人

- Fuse (see table A)
 Lead section (see table A)
- Minimum gas pressure switch
 Adjustment valve
- PG VR
- VS Safety valve VPS Seal control XP Plug for VPS

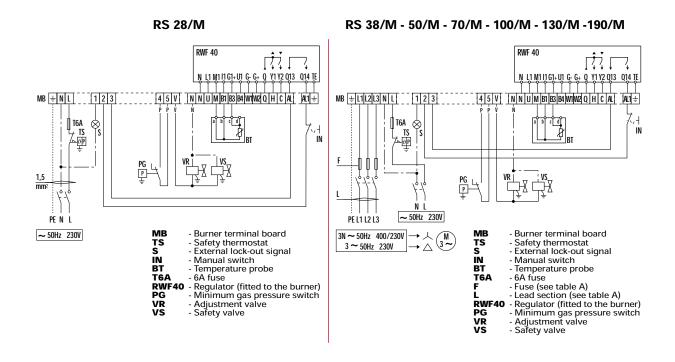
T6A TS VS

I VPS

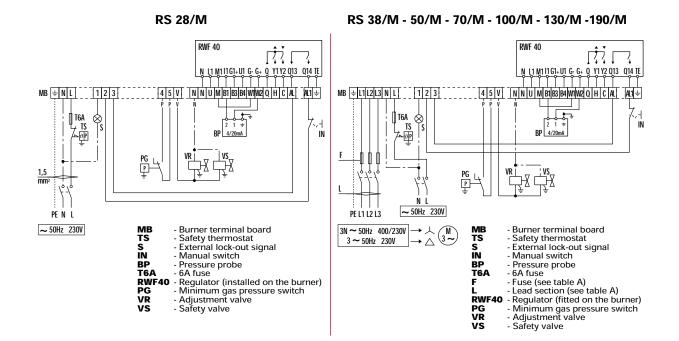
PENL ~ 50Hz 230V

MB ÷ N L

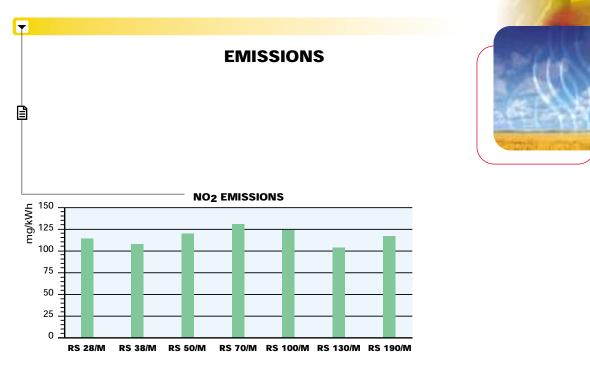
1,5 mm²

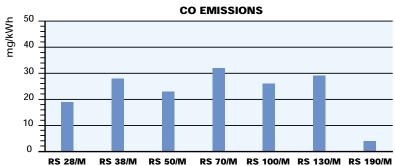

- MB
- TS S S1

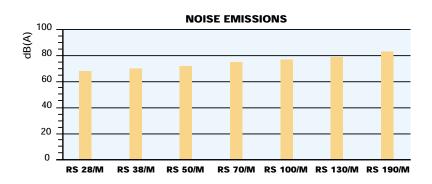
123


- Burner terminal board Safety thermostat External lock-out signal External lock-out signal on the seal control Manual switch Threshold thermostat
- IN
- ΤL
- **TR** High/low flame setting thermostat **T6A** 6A fuse
- PG Minimum gas pressure switch
 VR Adjustment valve
 VS Safety valve
 VPS Seal control

- XP - Plug for VPS


"MODULATING" OPERATION - pressure probe

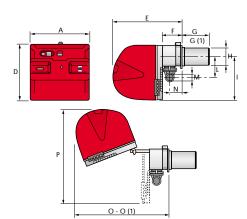



The following table shows the supply lead sections and the type of fuse to be used.

Mo	odel	▼RS 28/M	▼ RS	38/M	▼ RS	50/M	▼ RS	70/M	▼ RS	100/M	▼ RS	130/M	▼RS	190/M
		230V	230V	400V	230V	400V	230V	400V	230V	400V	230V	400V	230V	400V
F	А	Τ6	T6	T6	T6	T6	T10	T6	T16	T10	T16	T10	T25	T25
L	mm ²	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	2,5	2,5
Tab	le A													

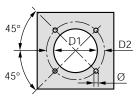
▼

The emission data has been measured in the various models at maximum output, according to EN 676 standard.



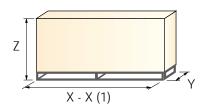
BURNERS

RS 28/M - 38/M - 50/M



RS 70/M - 100/M - 130/M - 190/M

Model	А	В	С	D	Е	F	G-	G (1)	Н	I	L	Μ	Ν	0 -	O(1)	Р
▶ RS 28/M	476	-	-	474	580	164	216 -	351	140	352	168	1″1/2	108	810 -	-	719
▶ RS 38/M	476	-	-	474	580	164	216 -	351	140	352	168	1″1/2	108	810 -	-	719
▶ RS 50/M	476	-	-	474	580	164	216 -	351	152	352	168	1″1/2	108	810 -	-	719
▶ RS 70/M	511	296	215	555	840	214	250 -	385	179	430	221	2″	134	1161 - 1	1296	-
▶ RS 100/M	527	312	215	555	840	214	250 -	385	179	430	221	2″	134	1161 -	1296	-
▶ RS 130/M	553	338	215	555	840	214	280 -	415	189	430	221	2″	134	1161 -	1296	-
▶ RS 190/M	681	366	315	555	856	230	372 -	530	222	430	186	DN 80	150	1312 -	-	-


(1) dimension with extended head

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
▶ RS 28/M	160	224	M8
▶ RS 38/M	160	224	M8
▶ RS 50/M	160	224	M8
▶ RS 70/M	185	275-325	M12
▶ RS 100/M	185	275-325	M12
▶ RS 130/M	195	275-325	M12
▶ RS 190/M	230	325-368	M16

PACKAGING

Model	X - X (1)	Y	Z	kg
▶ RS 28/M	872 - 1007	540	550	38
▶ RS 38/M	872 - 1007	540	550	40
▶ RS 50/M	872 - 1007	540	550	41
▶ RS 70/M	1190 - 1325	692	740	70
▶ RS 100/M	1190 - 1325	692	740	73
▶ RS 130/M	1190 - 1325	692	740	76
▶ RS 190/M	1250	785	725	82

(1) dimension with extended head

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

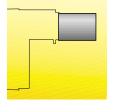
▼

B

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.
- Refit the burner casing to the slide bars.
- Close the burner, sliding it up to the flange.

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.
- Turn the motor to check rotation direction (if it is a three-phase motor).
- Perform a first ignition calibration on the gas train.
- On start up, check:
 - Gas pressure at the combustion head (to max. and min. output)
 - Combustion quality, in terms of unburned substances and excess air.



ACCESSORIES

B

Extended heads

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

	Combustion head extension kits							
Burner	'Standard head' length (mm)	'Extended head' length (mm)	Kit code					
RS 28/M	216	351	3010076					
RS 38/M	216	351	3010077					
RS 50/M	216	351	3010078					
RS 70/M	250	385	3010117					
RS 100/M	250	385	3010118					
RS 130/M	280	415	3010119					
RS 190/M	372	530	3010196					

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

Head length reduction kit						
Burner	Spacer thickness S (mm)	Kit code				
RS 28/M - 38/M - 50/M	90	3010095				
RS 70/M - 100/M - 130/M	135	3010129				
RS 190/M	110	3000722				

Continuous ventilation kit

If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

Continuous ventilation kit	
Burner	Kit code
RS 28/M - 38/M - 50/M	3010094
RS 70/M - 100/M - 130/M - 190/M	3010094

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

Sound proofing box							
Burner	box type	box code					
RS 28/M - 38/M - 50/M	C2	3000777					
RS 70/M - 100/M - 130/M - 190/M	C3	3000778					

Accessories for modulating operation

To obtain modulating operation, the RS/M series of burners requires a regulator with three point outlet controls. The relative temperature or pressure probes fitted to the regulator must be chosen on the basis of the application.

The following table lists the accessories for modulating operation with their application range.

REGUI	LATOR		PROBE	
Туре	Code	Туре	Range (°C) (bar)	Code
RWF 40	3010212	Temperature PT 100	-100 ÷ 500°C	3010110
		Pressure 4 ÷ 20 mA	0 ÷ 2,5 bar	3010213
		Pressure 4 ÷ 20 mA	0 ÷ 16 bar	3010214

Depending on the servomotor fitted to the burner, a three-pole potentiometer (1000 Ω) can be installed to check the position of the servomotor. The KITS available for the various burners are listed below.

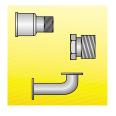
Potentiometer kit					
Burner	Kit code				
RS 28/M - 38/M - 50/M	3010109				
RS 70/M - 100/M - 130/M - 190/M	3010021				

LPG kit

-

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:

LPG kit		
Burner	Kit code for 'standard head'	Kit code for 'extended head'
RS 28/M	3010079	3010080
RS 38/M	3010081	3010082
RS 50/M	3010083	3010084
RS 70/M	3010097	3010098
RS 100/M	3010099	3010100
RS 130/M	3010101	3010102
RS 190/M	3010166	-



GAS TRAIN ACCESSORIES

Adapters

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

Adapters					
Burner	Gas train	Dimensions	Adapter code		
RS 28/M	MBD 407 - 410	3/4" 1" 1/2	3000824		
RS 38/M	MBD 407 - 410	3/4" 1" 1/2	3000824		
	MBD 420 - CB 50/1	2" 1" 1/2	3000822		
	MBD 407 - 410	3/4" 1" 1/2	3000824		
RS 50/M	MBD 420 - CB 50/1	2" 1" 1/2	3000822		
	MBD 415 - CB 40/1	1" 1/2 2"	3000843		
RS 70/M	CBF 65/1	DN 65 2"1/2 2" 2" 2"	3000825		
	CBF 80/1	DN 80 2"1/2 2"	3000826		
	MBD 415 - CB 40/1	1" 1/2 2"	3000843		
RS 100/M	CBF 65/1	DN 65 2"1/2 2"	3000825		
	CBF 80/1	DN 80 2"1/2 2"	3000826		
	MBD 415 - CB 40/1	1" 1/2 2"	3000843		
DC 100/04	CBF 65/1	DN 65 2"1/2	3000825		
RS 130/M	CBF 80/1	DN 80 2"1/2 2"	3000826		
		DN 100	3010223		
	CBF 100/1	DN 80 2"1/2 2"	3000826		
	MBD 420 - CB 50/1	DN 80 DN 65 2"1/2 2"	3010128		
	CBF 65/1	DN 65	3000831		
RS 190/M	CBF 80/1	DN 80	3000832		
	CBF 100/1	DN 100	3010127		

Y

₿

Seal control kit

▼

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The sealing control is type VPS 504.

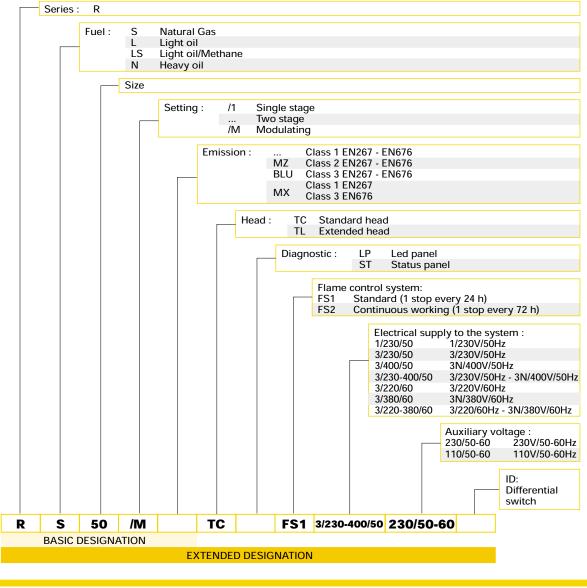
Seal control kit					
Burner	Gas train	kit code			
RS 28/M	MBD 407 - 410 - 412 - 415 - CB 40/1	3010123			
RS 38/M	MBD 410 - 412 - 415 - 420 - CB 40/1 - 50/1	3010123			
RS 50/M	MBD 410 - 412 - 415 - 420 - CB 40/1 - 50/1	3010123			
RS 70/M	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1	3010123			
RS 100/M	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1 - 80/1	3010123			
RS 130/M	MBD 415 - 420 - CB 40/1 - 50/1 - CBF 65/1 - 80/1	3010123			
RS 190/M	MBD 420 - CB 50/1 - CBF 65/1 - 80/1 - 100/1	3010123			

Stabiliser spring

Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range

Stabiliser springs					
Gas train	Code				
CBF 65/1 - CBF 80/1	Red da 25 a 55 mbar	3010133			
CBF 100/1	Red da 25 a 55 mbar	3010134			
CBF 65/1 - CBF 80/1	Black da 60 a 110 mbar	3010135			
CBF 100/1	Black da 60 a 110 mbar	3010136			
CBF 65/1 - CBF 80/1	Pink da 90 a 150 mbar	3090456			
CBF 100/1	Pink da 90 a 150 mbar	3090489			

Please refer to the technical manual for the correct choice of spring.


SPECIFICATION

Y

B

A specific index guides your choice of burner from the various models available in the RS/M series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES R BURNERS

LIST OF AVAILABLE MODELS

RS RS RS RS	28/M 28/M 28/M 28/M	TC TL TC TL	FS1 FS1 FS1 FS1	1/230/50 1/230/50 1/230/50 1/230/50	230/50-60 230/50-60 230/50-60 230/50-60	ID ID	RS RS RS RS	70/M 70/M 70/M 70/M	TC TL TC TL	FS1 FS1 FS1 FS1	3/230-400/50 3/230-400/50 3/230-400/50 3/230-400/50	230/50-60 230/50-60 230/50-60 230/50-60	ID ID
RS RS RS RS	38/M 38/M 38/M 38/M	TC TL TC TL	FS1 FS1 FS1 FS1	3/230-400/50 3/230-400/50 3/230-400/50 3/230-400/50	230/50-60 230/50-60 230/50-60 230/50-60	ID ID	RS RS RS RS	100/M 100/M 100/M 100/M	TC TL TC TL	FS1 FS1 FS1 FS1	3/230-400/50 3/230-400/50 3/230-400/50 3/230-400/50	230/50-60 230/50-60 230/50-60 230/50-60	ID ID
RS RS RS RS	50/M 50/M 50/M 50/M	TC TL TC TL	FS1 FS1 FS1 FS1	3/230-400/50 3/230-400/50 3/230-400/50 3/230-400/50	230/50-60 230/50-60 230/50-60 230/50-60	ID ID	RS RS RS RS	130/M 130/M 130/M 130/M	TC TL TC TL	FS1 FS1 FS1 FS1	3/230-400/50 3/230-400/50 3/230-400/50 3/230-400/50	230/50-60 230/50-60 230/50-60 230/50-60	ID ID
_		_					RS RS	190/M 190/M	TC TC	FS1 FS1	3/230-400/50 3/230-400/50	230/50-60 230/50-60	ID

Other versions are available on request

PRODUCT SPECIFICATION

Burner:

Monoblock forced draught gas burner with two stage progressive or modulating operation, with a specific kit, fully automatic, made up of:

- Air suction circuit lined with sound-proofing material
- Fan with reverse curve blades (straight blades on the 190/M model) high performance with low sound emissions
- Air damper for air flow setting and butterfly valve for regulating fuel output controlled by a servomotor with variable cam
- Starting motor at 2800 rpm, three-phase 400V with neutral, 50Hz (single-phase, 230V and 50Hz for the 28/M model)
- Combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Maximum gas pressure switch to stop the burner in the case of excess pressure on the fuel supply line
- Minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
 Flame control panel, fitted with control function for the correct positioning of the servomotor and possibility of post-purge by just changing the electric wiring
- Burner on/off selection switch
- Manual or automatic output increase/decrease selection switch
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 44 electric protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with:

- Filter
- Stabiliser
- Minimum gas pressure switch
- Safety valve
- Valve seal control (for output > 1200 kW)
- One stage working valve with ignition gas output regulator.

Conforming to:


- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- Wiring loom fittings for the electrical connection (RS 28/M 38/M 50/M)
- 2 slide bar extensions (for extended head models and RS 190/M model)
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

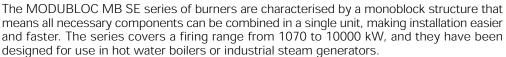
- Head extension kit
- Head length reduction kit
- Continuous ventilation kit
- Sound-proofing box
- RWF 40 output regulator
- Pressure probe 0 2.4 bar
- Pressure probe 0 16 bar
- Temperature probe -100 500°C
- Potentiometer kit for the servomotor
- LPG kit
- Gas train adapter
- Seal control kit

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.



MODULATING GAS BURNERS MODUBLOC MB SE SERIES MB 4 SE

CE

BLOC MB SE SERIES	► MB	4 SE	1070 ÷	4070 kW
	► MB	6 SE	1186 ÷	6000 kW
	► MB	8 SE	1500 ÷	8000 kW
	► MB	10 SE	2000 ÷	10000 kW

Adjustment is modulating, through an innovative electronic module, which gives control of the air/fuel ratio and PID control of the generator temperature or pressure.

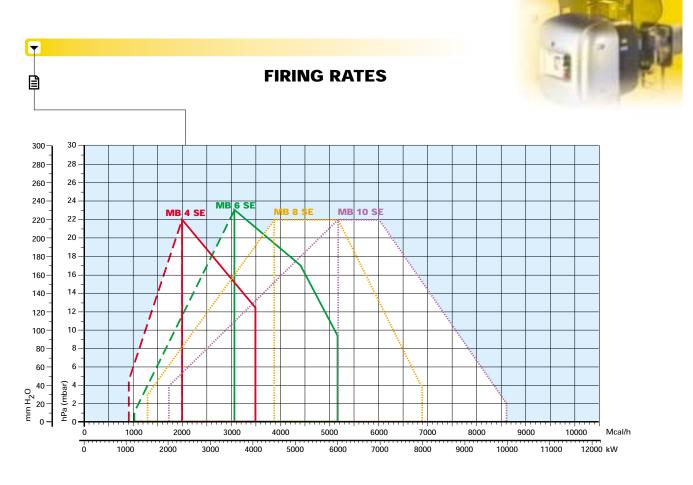
The mechanisms of regulation allow to catch up a high modulation ratio on all firing rates range.

The burner can, therefore, supply with precision the demanded power, guaranteeing a high efficiency system level and the stability setting, obtaining fuel consumption and operating costs reduction.

An exclusive design, with fan unit fitted on line with the combustion head, guarantees low sound emissions, reduced dimensions, easy use and maintenance.

III

TECHNICAL DATA


	Model		▼ MB 4 SE	▼ MB 6 SE	▼ MB 8 SE	▼ MB 10 SE		
	Setting type		modulating					
	Modulating ratio at max	. output	5 ÷ 1					
	Servo- type			MM 10004 (air) -	MM 10005 (gas)			
	motor run time	S	-					
	Heat	kW	1070/2325÷4070	1186/3558÷6000	1500/4500÷8000	2000/6000÷10000		
	output	Mcal/h	920/2000÷3500	1020/3060÷5160	1290/3870÷6880	1720/5160÷8600		
	Working temperature	°C min./max.		0/4	40			
	Net calorific value gas G20	kWh/Nm ³		1	0			
	Density gas G20	kg/Nm³		0,7	71			
	Output gas G20	Nm³/h	107/233÷407	119/356÷600	150/450÷800	200/600÷1000		
3	Net calorific value gas G25	kWh/Nm ³		8,	6			
ruei / air gata	Density gas G25	kg/Nm³		0,7	78			
	Output gas G25	Nm³/h	124/270÷473	138/414÷698	174/523÷930	233/698÷1163		
	Net calorific value gas LPG	kWh/Nm ³		25	,8			
2	Density gas LPG	kg/Nm ³		2,0	02			
	Output gas LPG	Nm³/h	41,5/90÷158	46/138÷233	58/174÷310	78/233÷388		
	Fan	type	reverse curve blades					
	Air temperature	max °C	60					
	Electrical supply	Ph/Hz/V	3N/50/230-400~(±10%)					
	Auxiliary electrical supply	Ph/Hz/V	1/50/230 ~ (±10%)					
	Control box	type	LFL 1.333					
2	Total electrical power	kW	13	15	26			
	Auxiliary electrical power	kW	2	2	0,55			
Electrical data	Protection level	IP		4	0			
2	Electric motor power	kW	11	13	22			
3	Rated motor current	Α	38 - 22	46,7 - 27	67,5 -	- 39		
	Motor start current	Α	7,3 x I nom	7,6 x I nom	7,9 x I	nom		
	Motor protection level	IP		5	5			
	Ignition	V1 - V2	230V - 2x5	5 kV	230V - 2	x6 kV		
	transformer	1 - 2	1,9A - 30r	mA	1,9A - 3	80mA		
	Operation		Intermittent (at least o	one stop every 24 h) or Con	tinuous as optional (at leas	st one stop every 72 h)		
2	Sound pressure dBA		82	85	88			
	Sound output	w	-					
Emissions	CO emissions	mg/kWh		< '	15			
	NOx emissions	mg/kWh		< 1	50			
	Directive		90/396 - 89/336 - 73/23 EEC					
Approval	According to			EN	676			
	Certifications		CE 0085AU	2367	in progres	s (CE)		

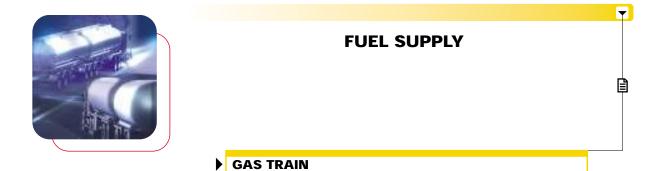
T

₿

Reference conditions: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 meters a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful rate for the choice of the burner


[_] Modulating rate

Γ

Firing rates in progress

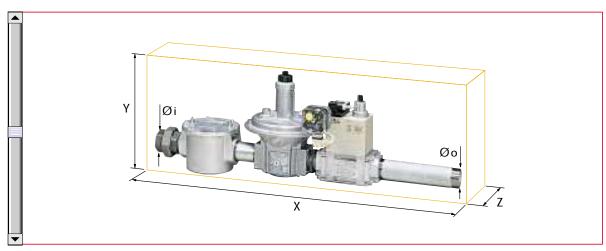
Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 meters a.s.l.

The burners are fitted with a butterfly valve to regulate the fuel, controlled by the main management module of burner through a high precision servomotor.

Fuel can be supplied either from the right or left sides, on the basis of the application requirements. A maximum gas pressure switch stops the burner in case of excess pressure in the fuel line.

The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

The gas trains are "Composed" type (assembly of the single components).


Example of the MB 4 SE gas adjustment butterfly valve

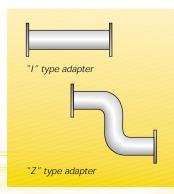
F

1	Manual valve
2	Anti-vibration joint
3	Pressure gauge with pushbutton cock
4	Filter
5	Pressure regulator (vertical)
6	Minimum gas pressure switch
7	VS safety solenoid (vertical)
8	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
9	Gasket and flange supplied with the burner
10	Gas adjustment butterfly valve
11	Burner
12	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
13	Gas train-burner adapter
14	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

Example of gas train "COMPOSED" type without seal control

▼


Gas trains are approved by standard EN 676 together with the burner.

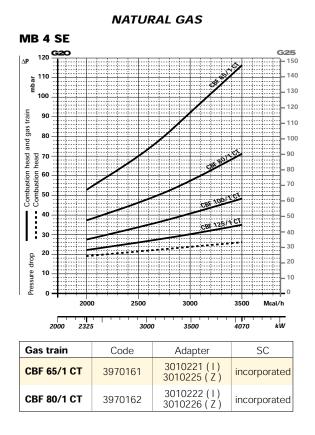
The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to MB SE burners, intake and outlet diameters and seal control if fitted.

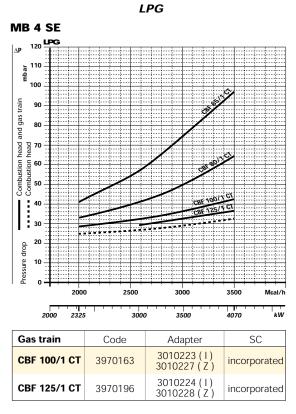
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

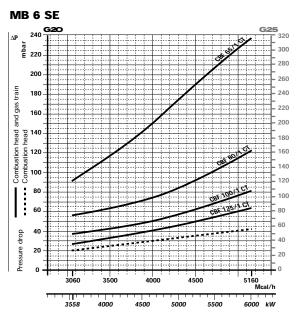
The maximum gas pressure of gas train "Composed" type is 500 mbar.

	Name	Code	Øi	Øо	X mm	Y mm	Z mm	CT
ED	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	incorporated
RAIN	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	incorporated
MPOSEI AS TRAINS	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	incorporated
0g	CBF 125/1 CT	3970196	DN 125	DN 125	1166	686	400	incorporated

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

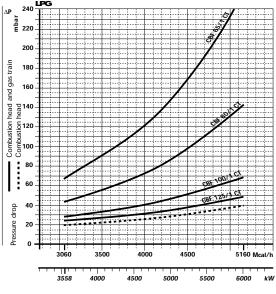

For further information see paragraph "Accessories".




PRESSURE DROP DIAGRAMS

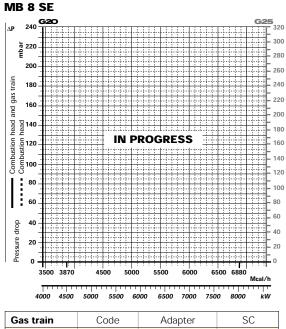
The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

The value thus calculated represents the minimum required input pressure to the gas train.

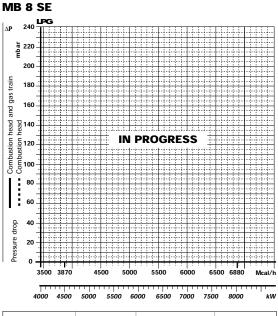


Gas train	Gas train Code		SC
CBF 65/1 CT	CBF 65/1 CT 3970161		incorporated
CBF 80/1 CT	3970162	3010222(I) 3010226(Z)	incorporated

MB 6 SE

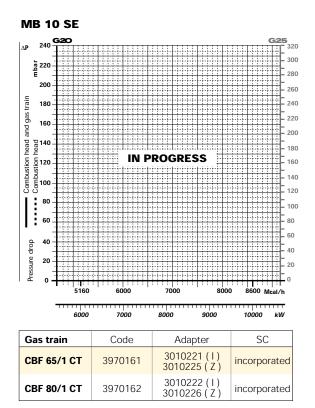

Gas train Code Adapter		Adapter	SC
CBF 100/1 CT 3970163		3010223(I) 3010227(Z)	incorporated
CBF 125/1 CT	3970196	3010224 (I) 3010228 (Z)	incorporated

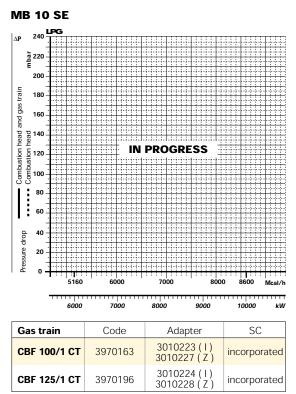
▼



NATURAL GAS

▼




Gas train Code		Adapter	SC
CBF 65/1 CT	3970161	3010221(I) 3010225(Z)	incorporated
CBF 80/1 CT	3970162	3010222(I) 3010226(Z)	incorporated

LPG

Gas train	Code	Adapter	SC
CBF 100/1 CT	3970163	3010223(I) 3010227(Z)	incorporated
CBF 125/1 CT	3970196	3010224 (I) 3010228 (Z)	incorporated

▶ note

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

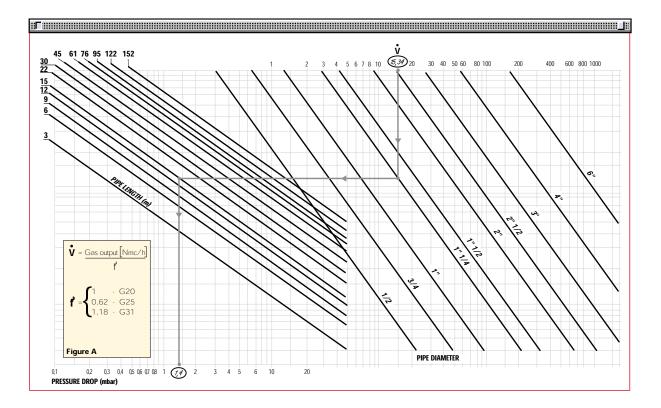
The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line.

The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale ($\mathbf{\dot{v}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.


Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

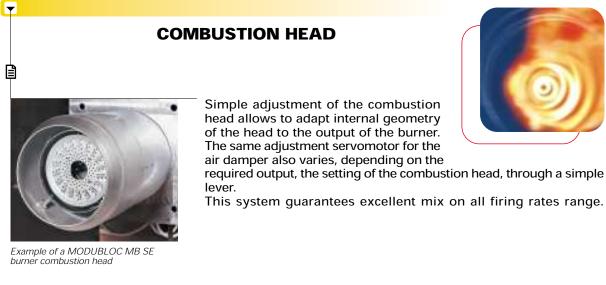
Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

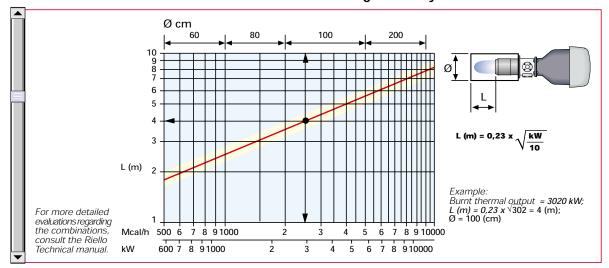
- once the value of 15.34 has been identified on the output scale ($\dot{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

▼

Example of the servomotor and dampers for air setting


All the burners in the MB series are fitted with fans with reverse curve blades, which give excellent performance and are fitted in line with the combustion head. The air



flow and sound-deadening materials that are used in the construction are designed to reduce sound emissions to the minimum and guarantee high levels of performance in terms of output and air pressure.

A high precision servomotor through the main management module installed on each burner of MB series, controls the air dampers position constantly, guaranteeing an optimal fuel-air mix. On request, the

Modubloc burners can be supplied with the "inverter" configuration, which means they are fitted with a device for varying the amount of combustion air through a variable speed action of the fan motor. The addition of the interface inverter module means the burner can work at reduced speed, with further benefits in terms of sound emissions, especially during the night when the perception threshold is lower.

Dimensions of the combustion chambers used in the testing laboratory

SETTING

OUTPUT SETTING

Main management module

mechanical regulation cams on traditional modulating burners.

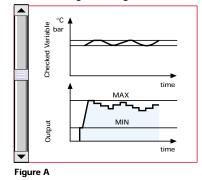
Inside each MB series burner main electronic microprocessor management panel, there is a PID regulator to control the boiler temperature or pressure . Variables can be controlled by specific accessory probes (see paragraph "Accessories).

The burner can run for a long time on intermediate output settings (see fig. A)

The main electronic management panel shows all operational parameters in real time, so as to keep a constant check on the burner:

- servomotor angle
- required set-point and actual set-point
- fuel consumption (measured indirectly)
- smoke and environmental temperature (with EGA module)
- CO₂, CO, O₂, NO e SO₂ value (with EGA module)
- burner stage

The main electronic management panel operations can be increased by installing accessory modules as illustrated below. For available module codes see "Accessories".


Special software can be loaded into a portable PC to input and download data through an interface cable to an infrared device on the front panel of the MB series burner.

This is useful both during burner start-up and commissioning phases, and maintenance.

Each MB series burner has a main electronic microprocessor management panel, which controls both the fuel flow servomotor (with a pressure regulator) and air flow servomotor (with air dampers).

Hysteresis is prevented by the precise control of the two servomotors and the software link. The high precision regulation is due to the absence of mechanical clearance normally found in

"modulating" setting

D.T.I. Module

D.T.I. module (Data Transfer interface)

This electronic module can transfer multiple signals from different local modules to a BMS supervisor software system (Building Management System).

Examples of local modules:

- main management module on each MB series burner which sends and receives signals to indicate or modify the burner working stage
- modules which send and receive signals from the various devices in the boiler room and system.
 - e.g. analog modules I/Ŏ
 - digital modules /O
 - EGA modules

(For further information see relative paragraph)

Up to ten MB series burners, with or without the EGA module, ten analog modules I/O and ten digital modules I/O can be linked up.

The DTI module uses MODUBUS interface protocol as a standard protocol to external supervisory systems (a type of field bus widely used in industrial communication systems).

This type of protocol is used when sample signal rates which need checking are low e.g. for temperature, pressure or pump and fan systems.

With special electronic interface boards other communication protocols (e.g. PROFIBUS) can be used.

DTI module information is transferred directly or by modem to supervisory systems by RS 232 or RS 422 (in the case of long distance up to 1 km) connections.

The supervisory system can also manage a series of MB burners installed in the same system; each main electronic management panel comes with the software needed to manage such a series of burners.

Digital I/O Module

Digital I/O Module

Digital modules I/O transfer in-coming and out-going information such as working stages and alarms, from the boiler room or from the system in general where one or more MB series burners are installed to a remote supervisor system.

Digital modules I/O manage both input and output signals, e.g.:

- n. 16 input signals (free contacts max. current 1 A)
- n. 8 output signals (free contacts max. current 1 A)

The out-going signals can control any device in the boiler room, e.g. pumps, fans, etc...

The in-coming signals can check any device in the boiler room, e.g. pumps, fans, etc... and receive warning signals such as over heating, excess pressure.

Up to ten I/0 digital modules can be linked together. Fig. C shows an example of sequencing I/O digital modules linked to a remote supervisor system by a DTI interface.

Analog I/O module

I/O Analog modules transfer in-coming and out-going information about burner working stages and other devices in the boiler room or in the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O Analog modules manage both input and output signals, such as 4-20 mA or 0-10 Volt, e.g.:

- n. 6 input signals
- n. 6 output signals

These modules can be connected to the remote supervisor system in two different ways:

Analogic I/O Module

- "LOW LEVEL" connection

each I/O analog module transmits information from a single burner to a remote supervisor system using 4-20 mA or 0-10 Volt signals, e.g.

boiler temperature/pressure, output level, boiler set-point, servomotor angle position, etc. The system becomes operational when each single I/O analog module is programmed by a portable PC and appropriate software.

The set point can be modified by a single in-coming 4–20 mA or 0-10 Volt signal from the supervisor system.

Here is an example of a "LOW LEVEL" connection between I/O analogue modules and remote supervisor system. (figure B)

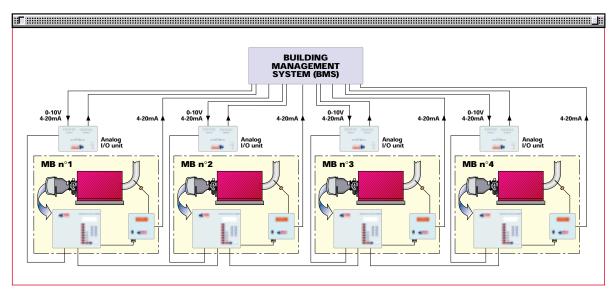


Figura B - "LOW LEVEL" connection

- "HIGH LEVEL" connection

each I/O analog module transmits in-coming and out-going information about boiler room temperature/pressure, pump rpm, set point, to a remote supervisor system using 4-20 mA or 0-10 Volt signals, through DTI interface.

Up to ten I/0 digital modules can be linked together.

▼

Here is an example of an "HIGH LEVEL" connection between I/O analogue modules and remote supervisor system. (figure C)

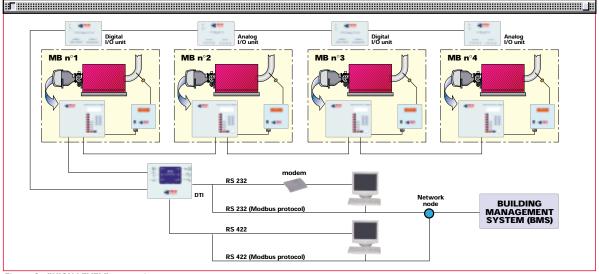


Figura C - "HIGH LEVEL" connection

E.G.A. module (Exhaust Gas Analyser)

EGA modules measure some of the exhaust gas substances. These modules come with an exhaust gas sampler probe and exhaust gas temperature probe (0-400 $^{\circ}$ C).

Four different EGA modules are available depending on the type of substance to be checked. (For further information see "accessories" paragraph).

Thanks to EGA module connected to the main electronic microprocessor management panel on each MB series burner, the burner can adjust its working parameters on the basis of continuous combustion gas analysis. The EGA module creates a closed control link which increases efficiency

E.G.A. Module

-

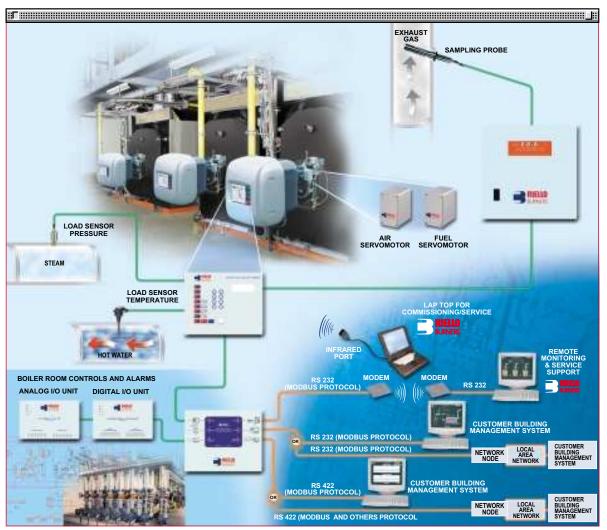
The following functions are also available:

- smoke and environmental temperature measurement
- viewing of measured parameters on main management display panel
- burner lock-out when some parameters exceed permitted levels (settable)
- combustion optimisation with automatic air damper setting (adjustment O2 level)

by up to max 5%.

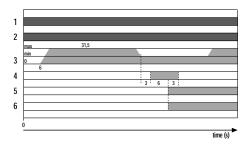
- automatic re-adjustment at each firing

The information from EGA modules can be sent to a remote supervisor system in two ways:


- through six signals (4-20mA) on a terminal board (see layout fig. B)
 To activate this operation each single EGA module must be programmed using a PC with appropriate software.
- through the DTI interface module (see layout fig. C)

Connections between Modules

A data cable type BELDEN 9501 or similar, which can be ordered as an accessory (see accessories paragraph), must be used to connect the above modules.



The following diagram summarises how MB series burners and modules can be used for the supervision of boiler rooms or systems in general.

Example of boiler room management system

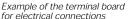
IGNITION

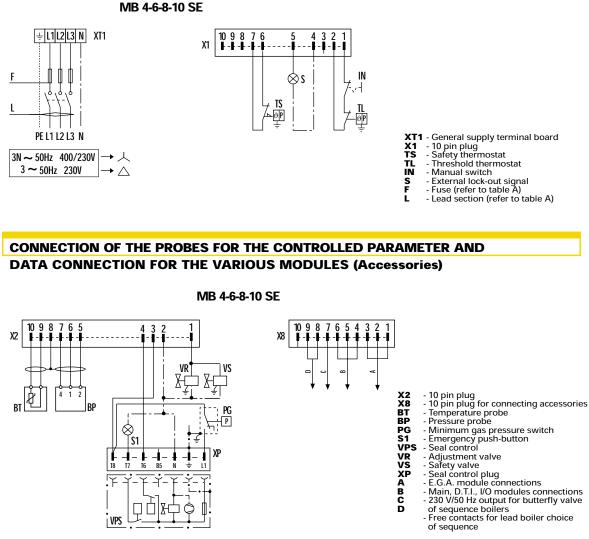
MB 4-6-8-10 SE

- 1 Closing thermostat
- 2 Fan motor working
- 3 Air damper
- 4 Ignition transformer
- 5 Valves open
- 6 Flame presence

▼

ELECTRICAL CONNECTIONS To be made by the installer

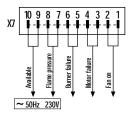



T

B

Electrical connections must be made by qualified and skilled personnel, according to the local norms.

THREE PHASE SUPPLY TO THE POWER CIRCUIT AND CONNECTING THE AUXILIARY CONTROLS

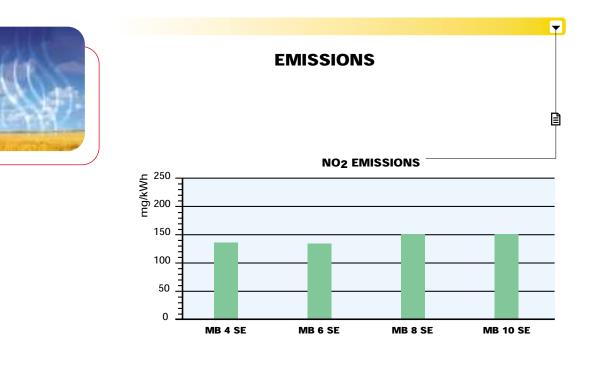


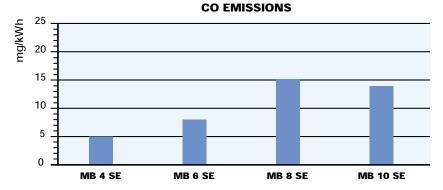
П

i VPS

SIGNALS FOR WORKING STATUS OF THE MAIN COMPONENTS

MB 4-6-8-10 SE

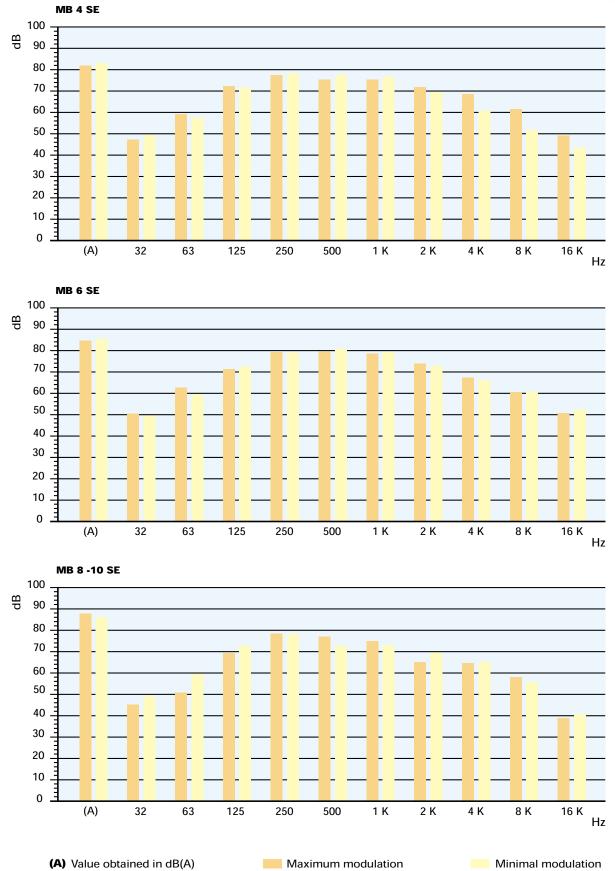

The following table shows the supply lead sections and the type of fuse to be used.


SL		Х8	00 00	X7	00 00	Х6	00 00	Х5		
	a a	X1	00 00	X2	00 00	X3	00 00	X4	0	

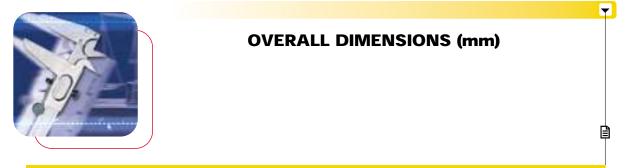
X7 - 10 pin output plug, free contacts
 SL - Layout plug diagram
 X3,4,5,6 - Plugs for electrical factory-set connections

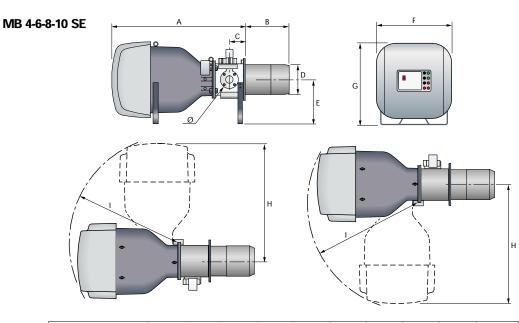
Model		▼ MB	4 SE	▼ MB	6 SE	▼ ME	8 8 SE	▼ MB	10 SE
		230V	400V	230V	400V	230V	400V	230V	400V
F	А	63 gG	50 gG	63 gG	50 gG	80 gG	63 gG	80 gG	63 gG
L	mm ²	6	4	6	4	10	10	10	10

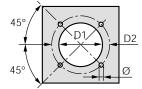
Table A



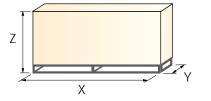
The emission data has been measured in the various models at maximum output, according to EN 676 standard. ▼




SOUND EMISSIONS



BURNERS


Model	А	В	С	D	Е	F	G	Н	I	Ø
► MB 4 SE	1470	511	183	336	490	840	910	1330	1205	DN80
► MB 6 SE	1470	511	183	336	490	840	910	1330	1205	DN80
• MB 8 SE	1900	530	208	413	575	1007	1079	1740	1570	DN80
▶ MB 10 SE	1900	530	208	413	575	1007	1079	1740	1570	DN80

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
► MB 4 SE	350	496	M20
► MB 6 SE	350	496	M20
MB 8 SE	418	608	M20
▶ MB 10 SE	418	608	M20

PACKAGING

Model	Х	Y	Z	kg
► MB 4 SE	2120	1005	1175	300
MB 6 SE	2120	1005	1175	300
MB 8 SE	2590	1170	1350	450
MB 10 SE	2590	1170	1350	450

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

All operations must be performed in accordance with the technical handbook supplied with the burner.

Access to the internal components is very simple, as the back of the burner is hinged which means it can be completely opened.

The burners can be supplied with the opening on the right or left, depending on personal requirements.

FIXING THE BURNER TO THE BOILER AND INITIAL SETTINGS

E

- All the burners have lifting rings, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as template, prepare a suitable lifting system and, after hooking onto the rings, fix burner to the boiler.
- Install the gas train, choosing it on the basis of the maximum boiler output and on the basis of the diagrams enclosed with the burner instructions.
- Adjust the combustion head run, using the mechanism lever.

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- Turning the motor check the led signalling correct rotation direction, at left of the plugs group, is on.
- Perform a first ignition calibration on the gas train.
- On start up, check:
 - gas pressure at the combustion head (to max. and min. output)
 - combustion quality, in terms of unburned substances and excess air.

DTI Module (Data Transfer Interface)

This electronic module can transfer multiple signals from different local modules to a BMS supervisor software system (Building Management System).

DTI	module
Burner	module code
MB 4 - 6 - 8 - 10 SE	3010234

I/O digital module

Digital modules I/O transfer in-coming and out-going information such as working stages and alarms, from the boiler room or from the system in general where one or more MB series burners are installed to a remote supervisor system.

	I/O digital module
Burner	module code
MB 4 - 6 - 8 - 10 SE	3010233

I/O analogic module

I/O Analog modules transfer in-coming and out-going information about burner working stages and other devices in the boiler room or in the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O Analog modules manage both input and output signals, such as 4-20 mA or 0-10 Volt.

I/O analogic m	odule
Burner	module code
MB 4 - 6 - 8 - 10 SE	3010232

EGA module (Exhaust Gas analyser)

EGA modules measure some of the exhaust gas substances. These modules come with an exhaust gas sampler probe and exhaust gas temperature probe (0-400 $^{\circ}$ C).

Four different EGA modules are available depending on the type of substance to be checked, as given in the following table:

EGA module				
Burner	Analysed gas	module code		
MB 4 - 6 - 8 - 10 SE	CO, CO ₂ , O ₂	3010235		
MB 4 - 6 - 8 - 10 SE	CO, CO ₂ , O ₂ , NO	3010236		
MB 4 - 6 - 8 - 10 SE	CO, CO ₂ , O ₂ , SO ₂	3010237		
MB 4 - 6 - 8 - 10 SE	CO, CO ₂ , O ₂ , NO, SO ₂	3010238		

Belden 9501 type leads

All the connections for the above modules must be done using a BELDEN 9501 type lead, which is available as an accessory in coils of 50 m.

		Belden 9501 lead	
	Burner		lead code
	MB 4 - 6 - 8 - 10 SE		3010239

Accessories for modulating setting

Main management module allows a modulating setting with use of probes chosen on the basis of the application.

The following table lists the accessories for modulating setting, with the application field.


		PROBI	E	
11	Burner	Туре	Range (°C) (bar)	Code
1	MB 4 - 6 - 8 - 10 SE	Temperature	0 ÷ 400°C	3010187
2	MB 4 - 6 - 8 - 10 SE	Pressure	0 ÷ 3 bar	3010246
	MB 4 - 6 - 8 - 10 SE	Pressure	0 ÷ 18 bar	3010186
	MB 4 - 6 - 8 - 10 SE	Pressure	0 ÷ 30 bar	3010188

-

Kit for transformation to LPG

For burning LPG gas, a special kit is available to be fitted to the combustion head of the burner, as given in the following table:

LPG transfo	rmation kit
Burner	Kit code
MB 4 SE	3010189
MB 6 SE	3010190
MB 8 SE	in progress
MB 10 SE	in progress

Burner support

For easier maintenance, a mobile burner support has been designed, which means the burner can be dismantled without the need for forklift trucks.

Suppo	ort
Burner	Support code
MB 4 - 6 SE	in progress
MB 8 - 10 SE	in progress

▼

Adapters

С

In certain cases, an adapter must be fitted between the gas train and the burner, when the diameter of the gas train is different from the set diameter of the burner. Below are given the adapters than can be fitted on the various burners:

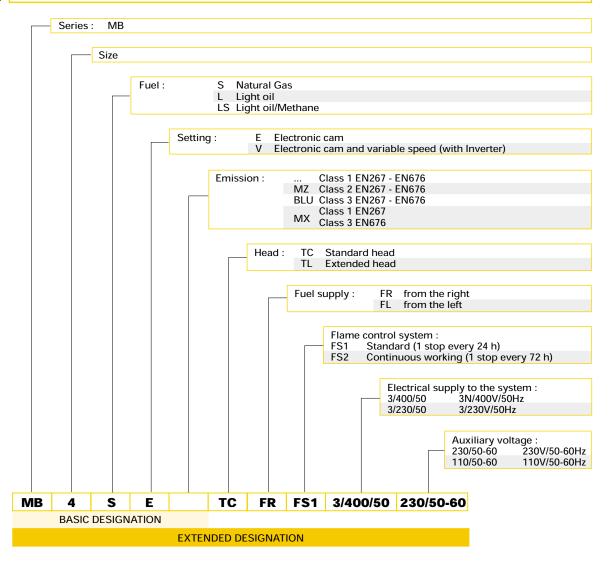
Adapters								
Burner	Gas train	Adapter type		Di	mensi	ons		Adapter code
	uani	type	Øi DN	Øo DN	A mm	B mm	C mm	Couc
MB 4-6-8-10 SE	CBF 65/1 CT	I	65	80	320			3010221
MB 4-6-8-10 SE	CBF 80/1 CT	I	80	80	320			3010222
MB 4-6-8-10 SE	CBF 100/1 CT	I	100	80	320			3010223
MB 4-6-8-10 SE	CBF 125/1 CT	I	125	80	320			3010224
MB 4-6-8-10 SE	CBF 65/1 CT	Z	65	80	400	480	225	3010225
MB 4-6-8-10 SE	CBF 80/1 CT	Z	80	80	400	480	225	3010226
MB 4-6-8-10 SE	CBF 100/1 CT	Z	100	80	400	480	225	3010227
MB 4-6-8-10 SE	CBF 125/1 CT	Z	125	80	500	480	300	3010228

Stabiliser spring

To vary the pressure range of the gas train stabilisers, accessory springs are available. The following table shows these accessories with their application range:

	Stabiliser spring	
Gas train	Spring	Code
CBF 65/1 CT - 80/1 CT	Red from 25 to 55 mbar	3010133
CBF 100/1 CT	Red from 25 to 55 mbar	3010134
CBF 125/1 CT	Red from 25 to 55 mbar	in progress
CBF 65/1 CT - 80/1 CT	Black from 60 to 110 mbar	3010135
CBF 100/1 CT	Black from 60 to 110 mbar	3010136
CBF 125/1 CT	Black from 60 to 110 mbar	in progress
CBF 65/1 CT - 80/1 CT	Pink from 90 to 150 mbar	3090456
CBF 100/1 CT	Pink from 90 to 150 mbar	3090489
CBF 125/1 CT	Pink from 90 to 150 mbar	in progress

Please refer to the technical manual for the correct choice of spring.


SPECIFICATION

Y

₿

A specific index guides your choice of burner from the various models available in the MODUBLOC MB series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES MODUBLOC MB BURNERS

LIST OF AVAILABLE MODELS

MB4SE	TC	FR	FS1	3/400/50	230/50-60	MB8SE	TC	FR	FS1	3/400/50	230/50-60
MB4SE	TC	FR	FS1	3/230/50	230/50-60	MB8SE	TC	FR	FS1	3/230/50	230/50-60
MB4SE	TC	FL	FS1	3/400/50	230/50-60	MB8SE	TC	FL	FS1	3/400/50	230/50-60
MB4SE	TC	FL	FS1	3/230/50	230/50-60	MB8SE	TC	FL	FS1	3/230/50	230/50-60
MB6SE	TC	FR	FS1	3/400/50	230/50-60	MB10SE	TC	FR	FS1	3/400/50	230/50-60
MB6SE	TC	FR	FS1	3/230/50	230/50-60	MB10SE	TC	FR	FS1	3/230/50	230/50-60
MB6SE	TC	FL	FS1	3/400/50	230/50-60	MB10SE	TC	FL	FS1	3/400/50	230/50-60
MB6SE	TC	FL	FS1	3/230/50	230/50-60	MB10SE	TC	FL	FS1	3/230/50	230/50-60

Other versions are available on request.

PRODUCT SPECIFICATION

Burner

▼

- Monoblock forced draught gas burner with modulating setting, fully automatic, made up of:
- Fan with reverse curve blades high performance with low sound emissions
- Air suction circuit lined with sound-proofing material
- Air damper for air setting controlled by a high precision servomotor
- Air pressure switch
- Fan starting motor at 2900 rpm, three-phase 230/400 400/690 V with neutral, 50Hz
- Mobile combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - flame stability disk
- Automatic regulator for gas delivery, controlled by a high precision servomotor
- Maximum gas pressure switch, with pressure test point, for halting the burner in the case of over pressure on the fuel supply line
- Module for air/fuel setting and output modulation with incorporated PID control of temperature or pressure of the heat generator
- Flame control panel for controlling the system safety
- Photocell for flame detection
- Star/triangle starter for the fan motor
- Burner on/off switch
- Auxiliary voltage led signal
- Manual or automatic output increase/decrease switch
- Burner working led signal
- Contacts motor and thermal relay with release button
- Motor failure led signal
- Burner failure led signal and lighted release button
- Led signal for correct rotation direction of fan motor
- Emergency button
- Coded connection plugs-sockets
- Burner opening hinge
- Lifting rings
- IP 40 electric protection level.

According to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 flange gasket
- 8 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- DTI module (Data Transfer Interface)
- I/O digital module
- I/O analogic module
- EGA module (Exhaust Gas Analyser) in the following versions:
 - EGA CO, CO₂, O₂
 - EGA CO, CO₂, O₂, NO
 - EGA CO, CO₂, O₂, SO₂
 - EGA CO, CO₂, O₂, NO, SO₂
- BELDEN 9501 type lead
- Pressure probe 0 3 bar
- Pressure probe 0 18 bar
- Pressure probe 0 30 bar
- Temperature probe 0 400°C
- Kit for transformation to LPG
- Burner support
- Adapters
- Stabiliser spring.

Lineagrafica

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

CE

LOW NOX SINGLE-STAGE GAS BURNERS

RIES	▶ BS1	16	÷	52	kW
	BS2	35	÷	91	kW
	BS3	65	÷	189	kW
	► BS4	110	÷	246	kW

The Riello Gulliver BS series of single-stage gas burners, is a complete range of Low NOx emission products, developed to respond to any request for home heating, conforming to the most severe standards regarding the reduction of polluting emissions. This series of burners is available in four different models with an output ranging from 16 to 246 kW, divided in four different structures.

All the models use the same components designed by Riello for the Gulliver series. The high quality level guarantees safe working.

In developing these burners, special attention was paid to reducing noise, the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

All the models are approved by the EN 676 European Standard and LRV-92 Swiss standards, and conform to BImSchV 1996 and European Directives, Gas Appliance, EMC, Low Voltage, Boiler Efficiency.

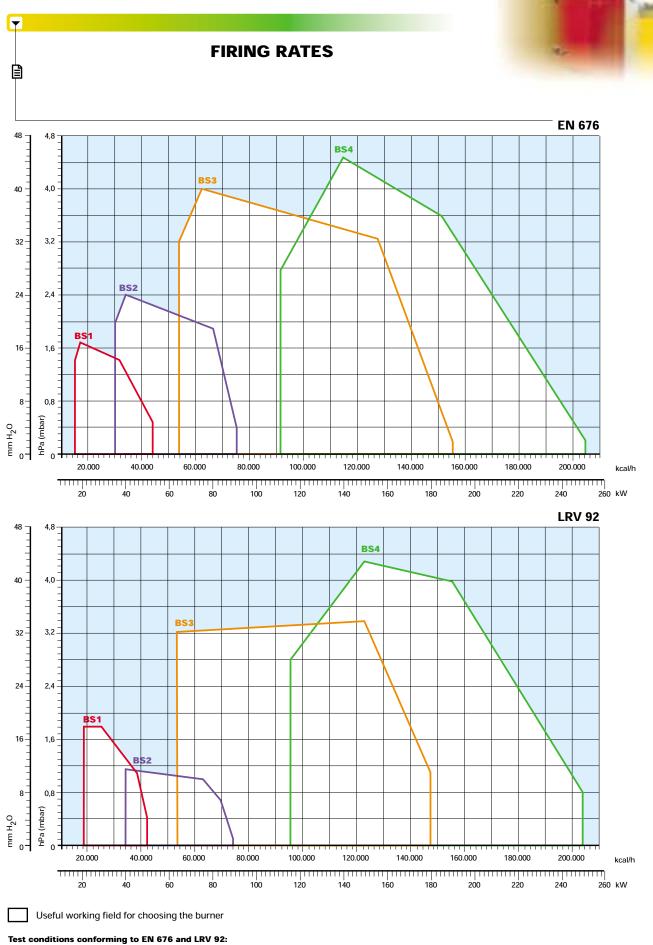
All the Gulliver BS burners are tested before leaving the factory.

► TS0005UK00

h

TECHNICAL DATA

Se m	etting ervo- type		▼ BS1	▼ BS2	▼ BS3	▼ BS4					
Se	ervo- type										
Se	ervo- type			Single	-						
m				Single-stage							
	otor run time			-	-						
	eat	kW	16 - 52		- 65 - 189	110 - 246					
	output Mcal/h					94,6 - 211,6					
	orking temperature		13,0 - 44,7	13,8 - 44,7 30,1 - 78,2 55,9 - 162,5							
	et calorific value G20 gas		0/40								
	20 gas density	kg/Nm ³		0,7							
	20 gas delivery	Nm ³ /h	1,6 - 5,2	3,5 - 9	6,5 - 19	11 - 24.6					
	et calorific value G25 gas		1,0 - 3,2	3,5 - 9 8,	•	11 - 24,0					
	25 gas density	kg/Nm ³		o, 0,7							
	25 gas delivery	Nm ³ /h	1,9 - 6	4 - 10,5	7,5 - 22	13 - 28,5					
(0)	et calorific value LPG gas		1,9 - 0			13 - 26,5					
	PG gas density	kg/Nm ³	25,8 2,02								
_	PG gas delivery	Nm ³ /h	0,6 - 2	1,3 - 3,5	2,5 - 7,3	4,2 - 9,5					
	an	type	forward tilted blades								
	ir temperature	max. °C		4							
	lectrical supply	Ph/Hz/V		1/50/23							
	ux. electrical supply	Ph/Hz/V		1/30/23							
	ontrol box	type		R.B.L							
	otal electrical output	5.	0,15	0,18	0,35	0,43					
	rotection level	IP	0,13	0,10	·	0,43					
	lectric motor output	-	0,15	0,18	0,35	0,43					
trio Ra	ated motor current	A	0,64	0,67	1,4	2					
8	lotor take-off current		3	3	3	8,5					
_	lotor protection level		.	2	-	0,0					
	nition transformer				n the control box						
-	peration			intermittent (at least							
	ound pressure	dB(A)	61	62	66	71					
	O Emissions	mg/kWh	•.	<							
	Ox Emissions	mg/kWh		<8							
D:	irectives	5		90/396/CEE, 89/336/CEE							
No Co	onforming to:				92 - BlmSchV 1996						
ž				CE - 0085							
A Ce	ertifications		BUWAL - Nr.100010	BUWAL - Nr.197011	BUWAL - Nr.100010	BUWAL - Nr.100010					


Reference conditions:

Temperature: 20°C Pressure: 1013.5 Mbar Altitude: 100 meters a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

T

₿

Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

FUEL SUPPLY

GAS TRAINS

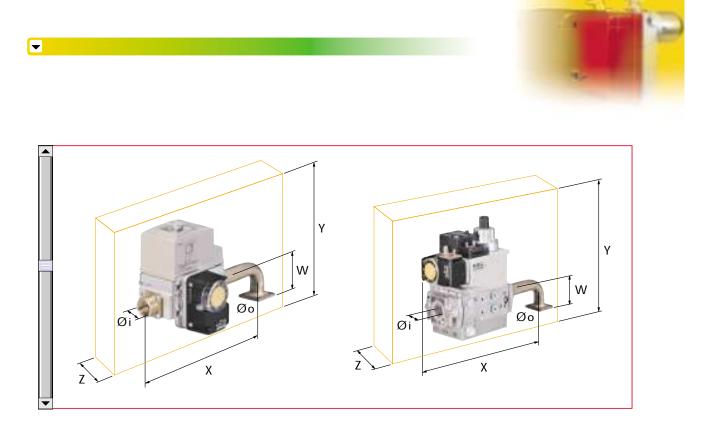
The burners are set for fuel supply from either the right or left hand sides.

Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

The gas train is Multibloc type, containing the main components in a single unit.

Except for the MBDLE 055 model, a valve seal control (as accessory) can be fitted to the Multibloc gas trains.

The MBDLE 055 Multibloc gas train can be fitted only to the left of the burner.

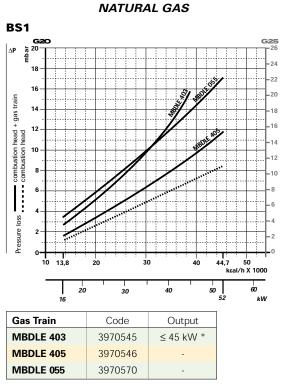

¥

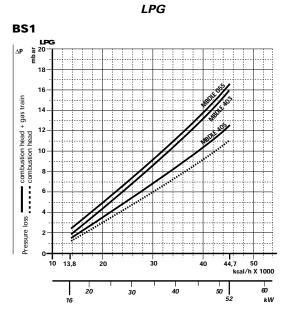
B

Gas train installed on the burner

MULTIBLOC Gas delivery pipe 1 2 Manual valve 3 Vibration damping joint 4 Gas pressure gauge Filter 5 10 LEAK DETECTION CONTROL DEVICE 6 Gas pressure switch 7 Safety solenoid 8 Adjustment solenoid: firing delivery adjustment (rapid opening) **MBDLE 055** maximum delivery adjustment (slow opening) 9 Pressure regulator 10 Leak detection control device for valves 7 and 8 (accessory) 11 Gas train-burner adapter MULTIBLOC 12 Burner 13 Shutter with adjustment screws 14 Pressure regulator setting device 15 Regulation solenoid Y) P1 Combustion head pressure P2 Upstream pressure from the filter P3 Upstream pressure from the control valve L Gas train supplied separately L1 To be performed by the installer

MBDLE 403 - 405 - 407 - 410 - 412

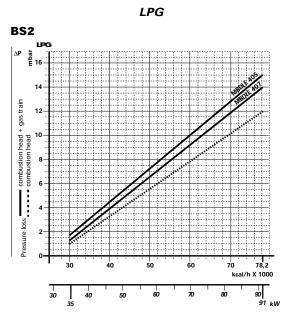

The dimensions of the gas trains vary depending on their construction features. The following table shows the dimensions of the gas trains that can be fitted to Gulliver BS burners, intake diameter and the coupling flange to the burner.


	Name	Code	Øi	Øo	X mm	Y mm	W mm	Z mm
	MBDLE 055	3970570	1/2"	FLANGE 1	232	126	45	122
C	MBDLE 403	3970545	1/2"	FLANGE 1	200	137	45	100
ŏ	MBDLE 405	3970546	1/2"	FLANGE 1	246	186	45	120
BL	MBDLE 405	3970547	3/4"	FLANGE 2	236	186	47	120
5	MBDLE 407	3970544	3/4"	FLANGE 2	236	186	47	120
N	MBDLE 407	3970548	3/4"	FLANGE 3	236	186	47	120
E	MBDLE 410	3970549	1" 1/4	FLANGE 3	259	215	47	145
	MBDLE 412	3970550	1" 1/4	FLANGE 3	259	215	47	145

PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be combined with them; the value thus calculated represents the minimum required input pressure to the gas train.

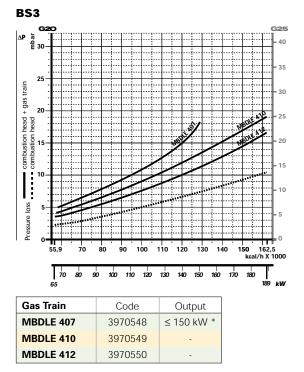


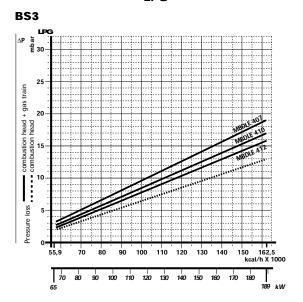


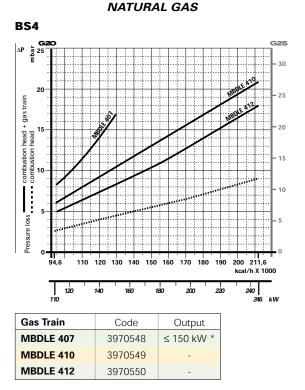
T

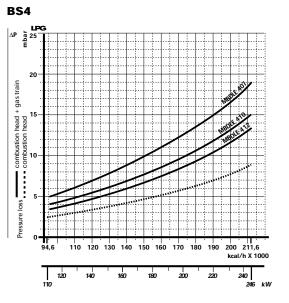
Ê

* with natural gas.









* with natural gas.

LPG

* with natural gas.

note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

DIMENSIONING OF THE FUEL SUPPLY LINES

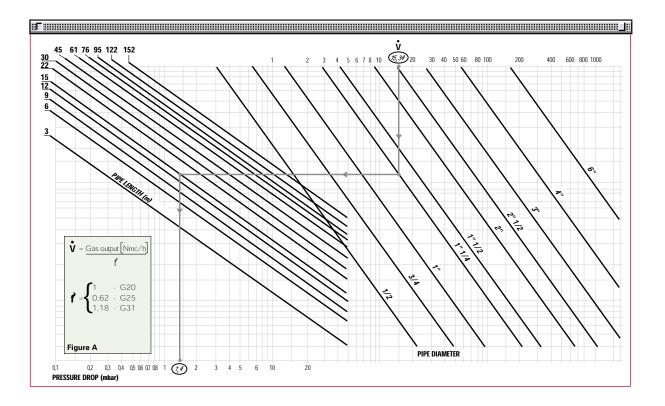
The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line.

The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale ($\dot{\mathbf{V}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop on the botton scale (mbar).


By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	t methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51 \\ 0.62 \end{bmatrix}$	= 15.34 mc/h

0.62

- once the value of 15.34 has been identified on the output scale (\dot{V}), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

III.

E

Air suction

The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

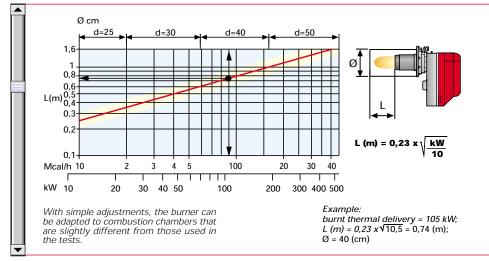
Air pressure switch

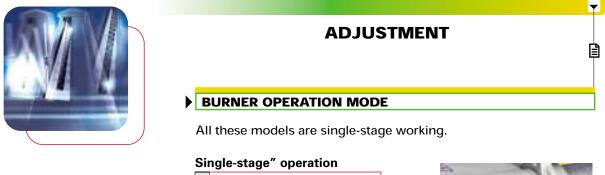
COMBUSTION HEAD

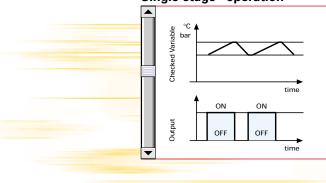
The combustion head in Gulliver BS burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

Thanks to the use of a mobile coupling flange, the penetration of the head into the combustion chamber can be adjusted.

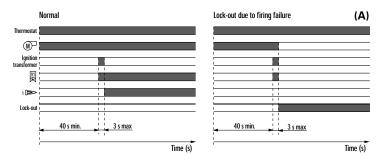
Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.




Combustion head


Mobile flange

Combustion chamber dimensions used in the test laboratory



FIRING

(A) Lock-out is shown by a led on the appliance.

Correct operations

0s	The burner begins
	the firing cycle
0s-40s	Pre-purge with the
	air damper open
40s	Ignition.

Lock-out due to firing failure

If the flame does not light within the safety limit (~ 3s) the burner locks-out.

▼

ELECTRICAL CONNECTIONS to be made by the installer

Electrical connections must be made by qualified and skilled personnel in conformity with the local regulations in force.

The 7-pole socket is incorporated in the control box, the 6-pole socket for connection to the gas train is already connected to the equipment and fixed to the outside of the burner.

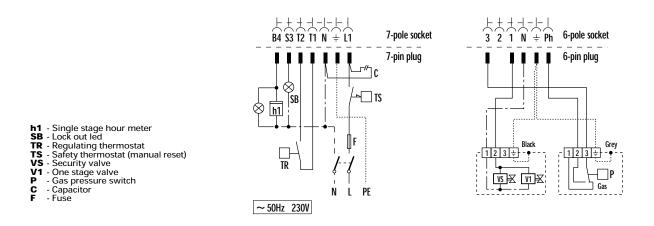
The 7-pin plug is also supplied for connection to the boiler.

Appliance fitted with an ignition transformer

6-pole socket

Y

Ê



7-pole socket incorporated in the control box

" SINGLE-STAGE" OPERATIONS

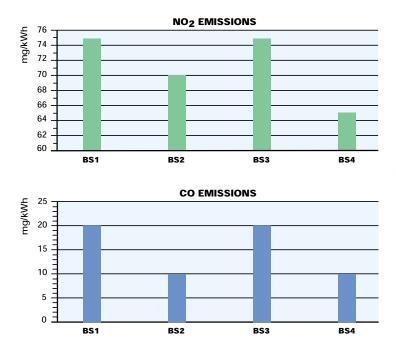
Burner electrical wiring

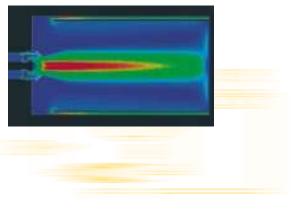
Gas train electrical wiring

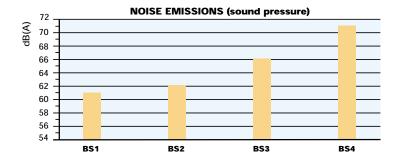
The following table shows the supply lead sections and types of fuse to be used.

Model	▼ BS1	▼ BS2	▼ BS3	▼ BS4
	230V	230V	230V	230V
FΑ	6	6	6	T6
L mm ²	1	1	1	1

F = Fuse L = Lead section







EMISSIONS

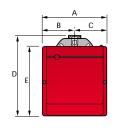
The burners in the Gulliver BS series guarantee controlled combustion, reducing emissions of both CO and NOx, this combustion control is due to the recirculation of the combustion products in the chamber (thanks to different combustible air flow speeds) and to the fuel staging technique (thanks to the special geometry of the gas nozzles).

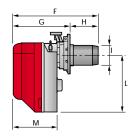
The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.

Special attention has been paid to noise reduction. All models are fitted with sound-proofing material inside the cover. T

₿

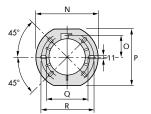
OVERALL DIMENSIONS (mm)

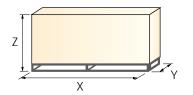



These models are distinguished by their reduced size, in relation to the outputs achieved, which means they can be fitted to any boiler on the market.

BURNER

T


₿


Model	А	В	С	D	E	F	G	Н	I	L	М
▶ BS1	234	122,0	112,0	295	254	346	230÷276	116÷70	83	210	174
► BS2	255	125,5	125,5	325	280	352	238÷252	114÷100	101	230	174
BS3	300	150,0	150,0	391	345	390	262÷280	128÷110	123	285	196
► BS4	300	150,0	150,0	392	345	446	278÷301	168÷145	131,5	286	216

BURNER-BOILER MOUNTING FLANGE

Model	N	0	Р	Q	R
► BS1	192	66	167	140	170
► BS2	192	66	167	140	170
► BS3	216	76,5	201	160	190
► BS4	218	80,5	203	170	200

PACKAGING

Model	Х	Y	Z	kg
▶BS1	385	268	340	10
►BS2	395	288	365	11
►BS3	440	335	430	15
►BS4	500	335	430	16,5

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel

The burner is set in the factory on standard calibration (minimum output). If necessary adjustments can be made on the basis of the maximum output of the boiler.

All operations must be performed as described in the technical handbook supplied with the burner.

The mobile flange allows adapting the length of the combustion head to the combustion chamber (flame inversion or 3 smoke cycles) and to the thickness of the boiler panel.

B

- The air damper position can be adjusted without removing the burner cover.
- Head setting is easy and aided by a graduated scale; a test point allows reading the air pressure in the combustion head.

 Gulliver BS burners are fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

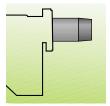
 Maintenance is easily solved because the combustion head can be disassemblyed without having to remove the burner and gas train from the boiler.

ACCESSORIES

Remote control release kit for the 568 control box

The 568 control box can be remotely released using an electric command kit.

This kit must be installed in conformity with current regulations in force.



B

Remote control release kit for the 568 control box					
Burner	Kit code				
BS1 - BS2 - BS3 - BS4	3001031				

Extended heads

Standard head" burners can be transformed into "extended head" versions by using the special kit. Below the KITS available for the various burners are listed, showing the original and the extended lengths.

Combustion head extension kit							
Burner	Standard head length (mm)	Extended head length (mm)	Kit code				
BS1	70 ÷ 116	175 ÷ 185	3001007				
BS2	100 ÷ 114	275 ÷ 285	3001008				
BS3	110 ÷ 128	270 ÷ 285	3001009				
BS4	145 ÷ 168	325 ÷ 340	3001016				

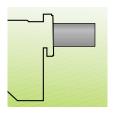
LPG transformation kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table:

LPG transformation kit					
Burner	Kit code				
BS1	3001003				
BS2	3001004				
BS3	3001005				
BS4	3001011				

Seal control kit

To test the valve seals on the gas train, (except for the model with Multibloc MBDLE 055) a special "seal control kit" is available.



Seal control kit					
Burner	Kit code				
BS1 - BS2 - BS3 - BS4	3010123				

Kit for alternative combustion heads

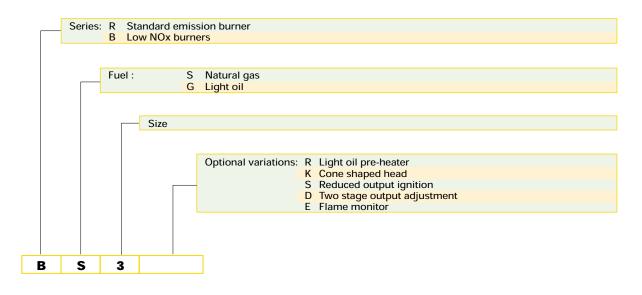
To extend the adaptability of Gulliver BS burners to any sort of application, alternative combustion heads have been developed, for example, to overcome situations of combustion instability which could arise with certain heat generators.

These heads cause a very limited increase in NOx emissions, due to the slower air flow.

Kit for alternative combustion heads					
Burner	Kit code				
BS1	3001059				
BS2	3001064				
BS3	3001060				
BS4	3001070				

▼

SPECIFICATION


A special index guides your choice of boiler from the various models available in the BS series. Below there is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

▼

₿

LIST O	F AVAILA	BLE	Е МОГ	DELS	
BS1	16	÷	52	kW	
BS2	35	÷	91	kW	
BS3	65	÷	189	kW	
BS4	110	÷	246	kW	

SPECIFICATION DESCRIPTION

Burner:

Monoblock, gas burners, completely automatic, with single stage settings fitted with:

- Fan with forward inclined blades
- Cover lined with sound-deadening material
- Air damper, completely closed in stand by, with external adjustment, with no need to remove the cover
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Flame inspection window
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train:

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Single stage working valve with ignition gas output regulator.

Burner and gas train assembled:

Approval:

- EN 676 standard
- LRV 92 standard.

Conforming to European Directives:

- 90/396/CEE (gas)
- 73/23/CEE (low voltage)
- 89/336/CEE (electromagnetic compatibility)
- 92/42/CEE (efficiency).

Conforming to:

- BlmSchV 1996.

Supplied material:

- Sliding flange
- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- 7-pin plug with capacitor for EMC
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Remote release kit
- Head extension kit
- LPG transformation kit
- Seal control kit
- Alternative combustion head kit.

Lineagrafica

RIELLO s.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

LOW NOX TWO-STAGE GAS BURNERS

CE

► BS1D	16/19	÷	52	kW
BS2D	35/40	÷	91	kW
BS3D	65/75	÷	189	kW
BS4D	110/140	÷	246	kW

The Riello Gulliver BSD series of two-stage gas burners, is a complete range of Low NOx emission products, developed to respond to any request for home heating, conforming to the most severe standards regarding the reduction of polluting emissions. This series of burners is available in four different models with an output ranging from 16 to 246 kW, divided in four different structures.

All the models use the same components designed by Riello for the Gulliver series. The high quality level guarantees safe working.

In developing these burners, special attention was paid to reducing noise, the ease of installation and adjustment, to obtaining the smallest size possible to fit into any sort of boiler available on the market.

Two stage working guarantees high level performance from the thermal unit. All the models are approved by the EN 676 European Standard and LRV 92 Swiss standards, and conform to BImSchV 1996 and European Directives, Gas Appliance, EMC, Low Voltage, Boiler Efficiency.

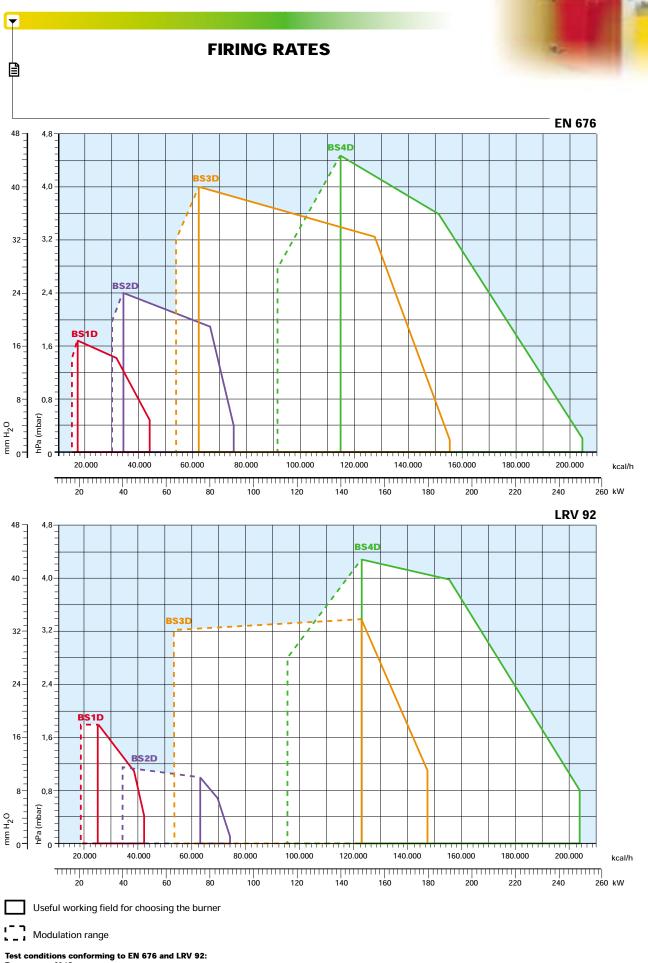
All the Gulliver BSD burners are tested before leaving the factory.

▶ TS0007UK00

Т

TECHNICAL DATA

	Model			▼ BS1D	▼ BS2D	▼ BS3D	▼ BS4D			
	Setting				Two stage					
	Servo- type				R.B.L.					
	motor	run time			6 ÷	28				
	Heat		kW	16/19 - 52	35/40 - 91	65/75 - 189	110/140 - 246			
	output		Mcal/h	13,8 - 44,7	30,1 - 78,2	55,9 - 162,5	94,6 - 211,6			
	Working	g temperature	°C min./max.		0/4	40				
	Net calori	fic value G20 gas	kWh/Nm ³		1(0				
	G20 gas	density	kg/Nm³		0,7	71				
	-	delivery	Nm³/h	1,6 - 5,2	3,5 - 9	6,5 - 19	11 - 24,6			
ta	Net calori	fic value G25 gas	kWh/Nm³		8,	6				
data	G25 gas	density	kg/Nm ³		0,7	78				
air	G25 gas	delivery	Nm³/h	1,9 - 6	4 - 10,5	7,5 - 22	13 - 28,5			
Fuel / air	Net calori	fic value LPG gas	kWh/Nm ³		25	,8				
5	LPG gas	density	kg/Nm³		2,0)2				
	LPG gas	delivery	Nm³/h	0,6 - 2	1,3 - 3,5	2,5 - 7,3	4,2 - 9,5			
	Fan		type		forward til	ted blades				
	Air tem	perature	°C max		40	0				
	Electrica	al supply	Ph/Hz/V		1/50/23	0 ±10%				
	Aux. ele	ctrical supply	Ph/Hz/V							
	Control	box	type		R.B.L	. 568				
data	Total ele	ectrical output	kW	0,15	0,18	0,35	0,43			
l da	Protecti	on level	IP		40	0				
Electrical	Electric	motor output	kW	0,15	0,18	0,35	0,43			
setr	Rated m	notor current	Α	0,64	0,67	1,4	2			
Ē	Motor ta	ake-off current	Α	3	3	3	8,5			
	-	rotection level	IP		20	0				
	Ignition	transformer			incorporated in	n the control box				
	Operatio	on			intermittent (at least	one halt every 24 h)				
ons	Sound p	oressure	dB(A)	61	62	66	71			
Emissions	CO Emi	ssions	mg/kWh		40					
E	NOx Em	nissions	mg/kWh	< 80						
	Directiv	es			90/396/CEE, 89/336/CEE	, 73/23/CEE, 92/42/CEE				
Lov.	Conform	ning to:			EN 676 - LRV 9	2 - BlmSchV 1996				
Approval	Certifica	ations		CE - 0085 AQ0409 BUWAL - Nr.100010						


Reference conditions:

Temperature: 20°C Pressure: 1013.5 Mbar Altitude: 100 meters a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Ţ

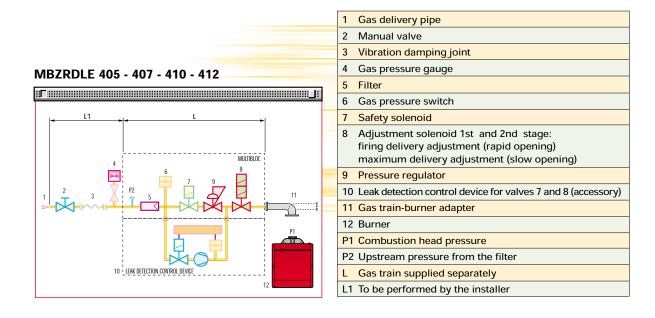
₿

Temperature: 20 °C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

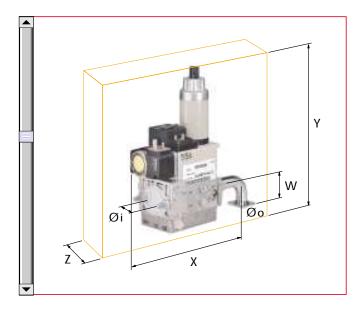
GAS TRAINS

The burners are set for fuel supply from either the right or left hand sides.

Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

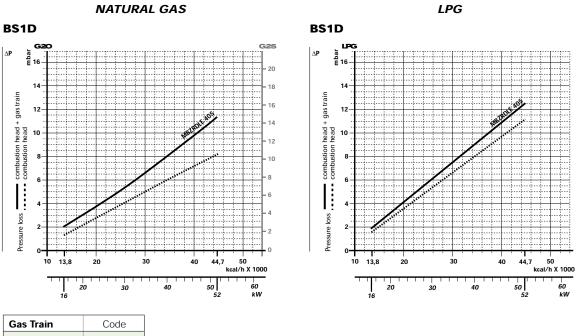

The gas train is Multibloc type, containing the main components in a single unit and it can be fitted with the valve seal control (as an accessory).

¥


B

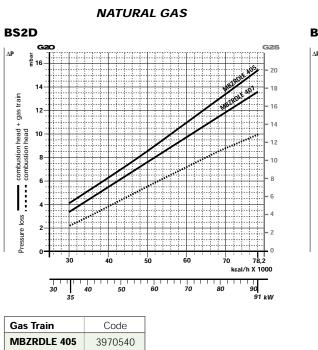
Gas train installed on the burner

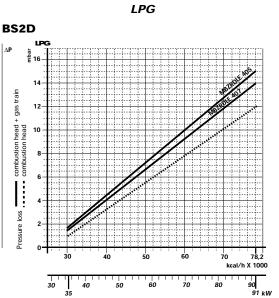
▼


The dimensions of the gas trains vary depending on their construction features. The following table shows the dimensions of the gas trains that can be fitted to Gulliver BSD burners, intake diameter and the coupling flange to the burner.

	Name	Code	Øi	Øо	X mm	Y mm	W mm	Z mm
ы	MBZRDLE 405	3970539	1/2"	FLANGE 1	246	256	45	120
ŏ	MBZRDLE 405	3970540	3/4"	FLANGE 2	236	256	47	120
BL	MBZRDLE 407	3970538	3/4"	FLANGE 2	236	256	47	120
5	MBZRDLE 407	3970541	3/4"	FLANGE 3	236	256	47	120
Ş	MBZRDLE 410	3970542	1" 1/4	FLANGE 3	259	315	47	145
	MBZRDLE 412	3970543	1" 1/4	FLANGE 3	259	315	47	145

PRESSURE DROP DIAGRAMS


The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; the value thus calculated represents the minimum required input pressure to the gas train.



 MBZRDLE 405
 3970539

MBZRDLE 407

3970538

T

Ê

BS4D

head + gas train head 15

combustion F combustion F 10

Pressure loss

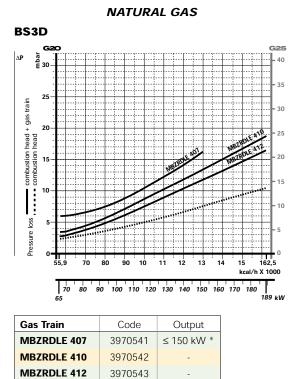
0

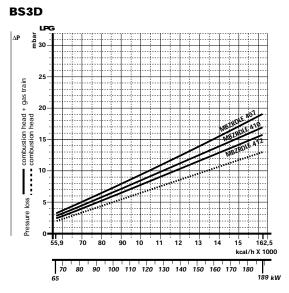
11[.] 94,6

120 110

110 120 130 140

140

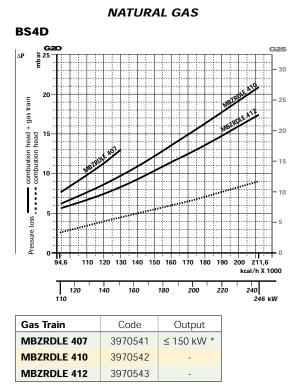

160


mbar

20

ΔP

LPG



LPG

* with natural gas.

▼

* with natural gas.

note For pressure levels different from those indicated above, please contact Riello Burners Technical Office.

00 211,6 kcal/h X 1000

240 246 kW

170 180

200

190 200

220

150 160

180

▼

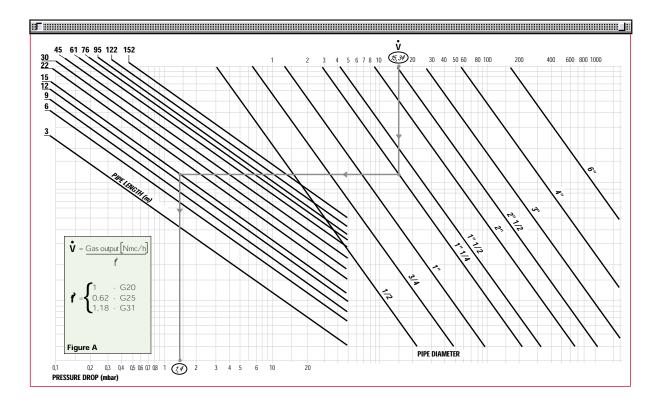
DIMENSIONING OF THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line.

The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.


Once the equivalent output has been determined on the delivery scale (\dot{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop on the botton scale (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	- conversion coefficient	0.62 (see figure A)
- equivalent	methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51 \end{bmatrix}$] = 15.34 mc/h

- equivalent methane output $\mathbf{V} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix} = 15.34 \text{ mc/h}$

- once the value of 15.34 has been identified on the output scale ($\check{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

E

E

Air suction

The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

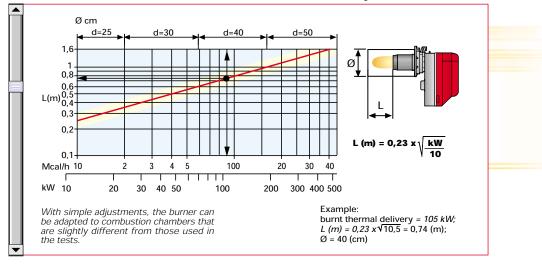
Air pressure switch

COMBUSTION HEAD

The combustion head in Gulliver BSD burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

Thanks to the use of a mobile coupling flange, the penetration of the head into the combustion chamber can be adjusted.

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

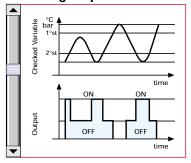


Combustion head

Mobile flange

Combustion chamber dimensions used in the test laboratory

ADJUSTMENT


BURNER OPERATION MODE

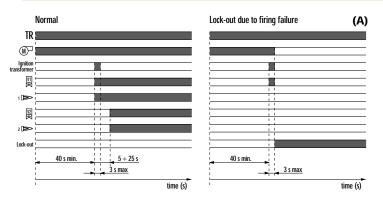
All these models are two-stage working.

The Gulliver BSD series of two stage burners allows operating at both full and reduced output, with consequent reduction in turning the burner on and off, their giving better performance to the boiler.

During stand-by, the air damper is completely closed (controlled by an electric servomotor) and prevents heat loss due to the flue draught.

"Two-stage" operation

Air damper adjustment



Air-damper opening mechanism

Air-damper opening mechanism

(A) Lock-out is shown by a led on the appliance.

Correct operations

- 0s The burner begins the firing cycle. 0s-40s Pre-purge with the air damper open. 40s
 - Ignition 1st stage.
- 45÷65s Ignition 2nd stage.

Lock-out due to firing failure

If the flame does not light within the safety limit (~ 3s) the burner locksout.

-

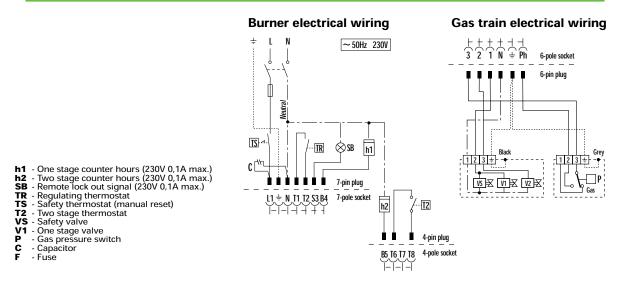
•

B

ELECTRICAL CONNECTIONS to be made by the installer

Electrical connections must be made by qualified and skilled personnel, in conformity with the local regulations in force. The 7-pole socket is incorporated in the control box, the 4pole socket (for connecting the 2nd stage thermostat to the hour meter) and the 6-pole socket (for connection to the gas train) are already connected to the equipment and fixed into the burner.

The 7 and 4-pin plugs are also supplied for connection to the boiler.

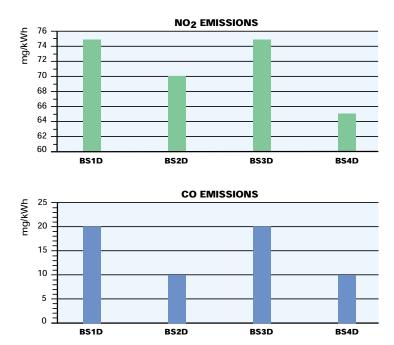

7-pole socket incorporated in the control box

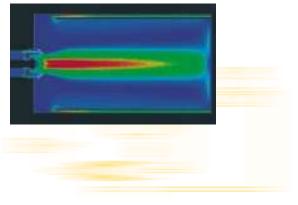
4-pole socket

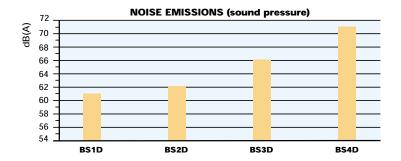
"TWO-STAGE" OPERATIONS

Ê

The following table shows the supply lead sections and types of fuse to be used.


Model		▼ BS1D	▼ BS2D	▼ BS3D	▼ BS4D
		230V	230V	230V	230V
F	А	6	6	6	Τ6
L	mm ²	1	1	1	1


F = Fuse L = Lead section


EMISSIONS

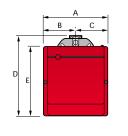
The burners in the Gulliver BSD series guarantee controlled combustion, reducing emissions of both CO and NOx, this combustion control is due to the recirculation of the combustion products in the chamber (thanks to different combustible air flow speeds) and to the *fuel staging* technique (thanks to the special geometry of the gas nozzles).

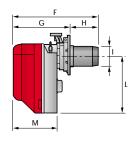
The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.

Special attention has been paid to noise reduction. All models are fitted with sound-proofing material inside the cover. Ŧ

₿

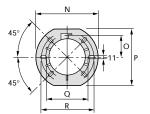
OVERALL DIMENSIONS (mm)

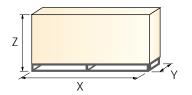



These models are distinguished by their reduced size, in relation to their output, which means they can be fitted to any boiler on the market.

BURNER

T


₿


Model	А	В	С	D	E	F	G	Н	I	L	М
► BS1D	234	122,0	112,0	295	254	346	230÷276	116÷70	83	210	174
► BS2D	255	125,5	125,5	325	280	352	238÷252	114÷100	101	230	174
▶ BS3D	300	150,0	150,0	391	345	390	262÷280	128÷110	123	285	196
► BS4D	300	150,0	150,0	392	345	446	278÷301	168÷145	131,5	286	216

BURNER-BOILER MOUNTING FLANGE

Model	N	0	Р	Q	R
▶ BS1D	192	66	167	140	170
► BS2D	192	66	167	140	170
▶ BS3D	216	76,5	201	160	190
► BS4D	218	80,5	203	170	200

PACKAGING

Model	Х	Y	Z	kg
► BS1D	385	268	340	11
► BS2D	395	288	365	12
► BS3D	440	335	430	16
► BS4D	500	335	430	18

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel

The burner is set in the factory on standard calibration (minimum output). If necessary adjustments can be made on the basis of the maximum output of the boiler.

All operations must be performed as described in the technical handbook supplied with the burner.

The mobile flange allows adapting the length of the combustion head to the combustion chamber (flame inversion or 3 smoke cycles) and to the thickness of the boiler panel.

B

BURNER SETTINGS

- The adjustment of the 1st stage air damper position can be easily carried out by setting the air damper motor and following the manual instruction.
- The second stage position of the air damper can be adjusted without removing the burner cover.

Head setting is easy and aided by a graduated scale; a test point allows reading the air pressure in the combustion head.

 Gulliver BSD burners are fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

MAINTENANCE

▼

T

 Maintenance is easily solved because the combustion head can be disassemblyed without having to remove the burner and gas train from the boiler.

ACCESSORIES

Remote control release kit for the 568 control box.

The 568 control box can be remotely released using an electric command kit.

This kit must be installed in conformity with current regulations in force.

Remote control release kit for the 568 control box.					
Burner	Kit Code				
BS1D - BS2D - BS3D - BS4D	3001031				

Extended heads

Standard head" burners can be transformed into "extended head" versions by using the special kit. Below the KITS available for the various burners are listed, showing the original and the extended lengths.

 	_	
ப		

Combustion head extension kit								
Burner Standard Extended head length head length (mm) (mm)								
BS1D	70 ÷ 116	175 ÷ 185	3001007					
BS2D	100 ÷ 114	275 ÷ 285	3001008					
BS3D	110 ÷ 128	270 ÷ 285	3001009					
BS4D	145 ÷ 168	325 ÷ 340	3001016					

LPG transformation kit

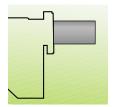
For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table:

LPG transformation kit						
Burner	Kit Code					
BS1D	3001003					
BS2D	3001004					
BS3D	3001005					
BS4D	3001011					

▼

Seal control kit

To test the valve seals on the gas train a special "seal control kit" is available.



Seal control kit	
Burner	Kit Code
BS1D - BS2D - BS3D - BS4D	3010123

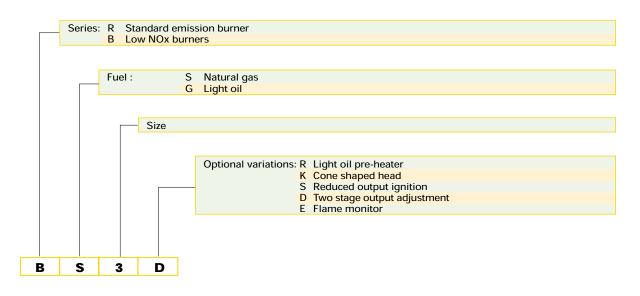
Kit for alternative combustion heads

To extend the adaptability of Gulliver BSD burners to any sort of application, alternative combustion heads have been developed, for example, to overcome situations of combustion instability which could arise with certain heat generators.

These heads cause a very limited increase in NOx emissions, due to the slower air flow.

Kit for a	Iternative combustion heads
Burner	Kit Code
BS1D	3001059
BS2D	3001064
BS3D	3001060
BS4D	3001070

SPECIFICATION


A special index guides your choice of boiler from the various models available in the BSD series. Below there is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

Y

₿

LIST OF AVAILABLE MODELS										
BS1D	16/19	÷	52	kW						
BS2D	35/40	÷	91	kW						
BS3D	65/75	÷	189	kW						
BS4D	110/140	÷	246	kW						

SPECIFICATION DESCRIPTION

Burner:

Monoblock, gas burners, completely automatic, with two stage settings fitted with:

- Fan with forward inclined blades
- Cover lined with sound-deadening material
- Air damper, completely closed in stand by, driven by an electric servomotor
- Air damper with 1st and 2nd stage adjustment (2nd stage external adjustment, with no need to remove the cover)
- Single phase electric motor 230 V, 50 Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Flame inspection window
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Protection filter against radio interference
- IP 40 electric protection level.

Gas train:

Fuel supply line in the Multibloc configuration, fitted with:

- Filter
- Pressure stabiliser
- Minimum gas pressure switch
- Safety valve
- Two stage working valve with ignition gas output regulator.

Burner and gas train assembled:

Approval:

- EN 676 standard
- LRV 92 standard.

Conforming to European Directives:

- 90/396/CEE (gas)
- 73/23/CEE (low voltage)
- 89/336/CEE (electromagnetic compatibility)
- 92/42/CEE (efficiency)

Conforming to:

- BlmSchV 1996
- Supplied material
- Sliding flange
- Flange insulation screen
- Screws and nuts for fixing the flange to the boiler
- 7-pin plug with capacitor for EMC
- 4-pin plug
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Remote release kit
- Head extension kit
- LPG transformation kit
- Seal control kit
- Alternative combustion head kit.

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

MODULATING LOW NOx GAS BURNERS

CE

▶ RS /M BLU SERIES
 ▶ RS 45/M BLU 90 ÷ 550 kW
 ▶ RS 68/M BLU 150 ÷ 860 kW
 ▶ RS 120/M BLU 300 ÷ 1300 kW
 ▶ RS 160/M BLU 300 ÷ 1860 kW

The RS/M BLU series of burners covers a firing range from 90 to 1860 kW, and they have been designed for use in hot or superheated water boilers, hot air or steam generators, diathermic oil boilers.

Setting Adjustment can be "two stage progressive" or, alternatively, "modulating" with the installation of a PID logic regulator and respective probes.

RS/M BLU series burners guarantees high efficiency levels in all the various applications, thus reducing fuel consumption and running costs.

Optimisation of sound emissions is guaranteed by the use of fans with forward inclined blades and sound deadening material incorporated in the air suction circuit.

The exclusive design ensures reduced dimensions, simple use and maintenance. A wide range of accessories guarantees elevated working flexibility.

TECHNICAL DATA

Model			▼ RS45/M BLU	▼ RS45/M BLU		▼ RS160/M BLU			
Sotting to	Cathing turns								
	Setting type Modulation ratio at max. output			Modulating (with regulator and probes accessories)					
			3÷1 4÷1 SON90 SQN31						
	Type Run time	s	24	42					
	Kull tille	kW							
Heat output		Mcal/h				300/930÷1860			
Working	Working temperature °C min./max		77/164÷473 129/301÷740 258/516÷1118 258/800÷1600						
	•	kWh/Nmc	0/40						
	c value gas G20		10						
	Density gas G20 kg/Nmc		0,71						
Output g	,		9/19÷55	15/35÷86	30/60÷130	30/93÷180			
	value gas G25			8,6					
Density g	ensity gas G25 kg/Nmc				,78				
Output ga		Nmc/h	10,5/22÷64	17,5/41÷100	35/70÷151	35/108÷216			
Net calorifi	c value LPG gas	kWh/Nmc			5,8				
- -	-	kg/Nmc		2,	,02				
Output L	PG gas	Nmc/h	-						
Fan		type	Centrifugal with reverse curve blades						
Air tempe		°C max	60						
Electrical		Ph/Hz/V	1/50/230~(±10%) 3N/50/230-400~(±10%)人 3/50/230~(±10%) △						
-	lectrical supply	Ph/Hz/V	1/50/230 ~ (±10%)						
Control b	ох	type	LMG22 (intermittent operation) - LGK16 (continuous operation)						
	otal electrical power kW		0,6	2,1	2,6	4,8			
Auxiliary el	xiliary electrical power kW		0,18	0,18 0,3 0,3		0,3			
Auxiliary el Protection Motor ele Rated mo Motor sta	n level	IP	44						
Motor ele	lotor electric power kW		0,42	1,5	2,2	4,5			
Rated mo	Rated motor current A		2,9	5,9 - 3,4	8,8 - 5,1	15,8 - 9,1			
Motor sta	or start current A		9,2	32,8 - 19	55,4 - 32	126 - 72,8			
Motor pro	otection level	IP		54					
Ignition		V1 - V2	230/240V - 1x15 kV 230V - 1x8 kV						
transform	ner	1 - 2	45vA - 25 mA 1A - 20 mA						
Operation	า		Intermittent (at	least one stop every 24 h)	- Continuous (at least one	stop every 72 h)			
Sound pr	essure	dBA	74	77	78,5	80,5			
Sound ou	Itput	w							
Sound pro Sound ou CO Emiss	ion	mg/kWh	< 20						
INOX LINK	ssion	mg/kWh		<	80				
Directive			90/396 - 89/336 -	90/396 - 89/336 - 73/23 - 92/42 EEC 90/396 - 89					
Directive According Certificati	g to		EN 676 - LRV 92	EN 676					
Certificat	ion		in progress (CE BUWAL n°)		in progress (CE)				

Reference conditions:

T

₿

Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 meters a.s.l. Noise measured at a distance of 1 meter.

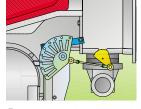
Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful rate for the choice of the burner

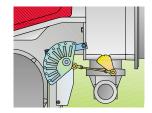
Modulating rate

Test conditions conforming to EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 meters a.s.l.

FUEL SUPPLY

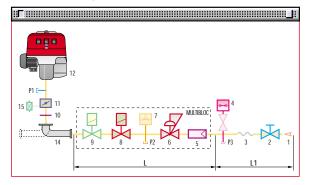

GAS TRAIN

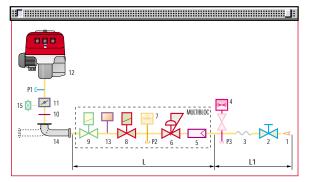
The burners are fitted with a butterfly valve to regulate the fuel, controlled by a variable profile cam servomotor. Fuel can be supplied either from the right or left hand


sides. A maximum gas pressure switch stops the burner in case of excess pressure in the fuel line.

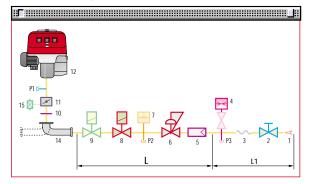
The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

The gas train can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).

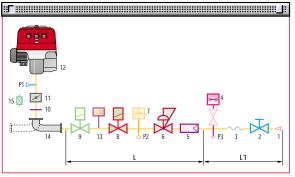


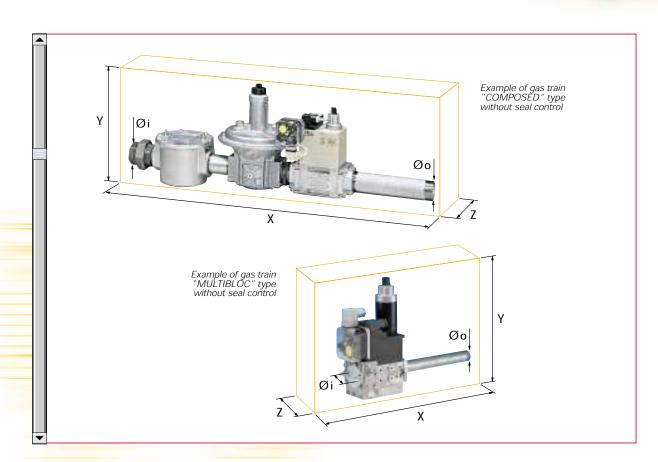

₿

Example of the variable profile cam on RS 160/M BLU burners.


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control




COMPOSED gas train without seal control

1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Gas adjustment butterfly valve
12	Burner
13	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
14	Gas train-burner adapter.
15	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

Gas trains are approved by standard EN 676 together with the burner.

▼

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RS/M BLU burners, intake and outlet diameters and seal control if fitted.

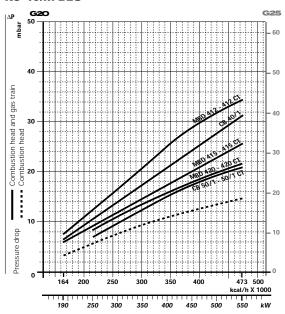
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

	Name	Code	Øi	Øo	X mm	Y mm	Z mm	SC
	MBD 407	3970076	3/4 "	3/4 "	371	196	120	-
C	MBD 410	3970077	1″	3/4 "	405	217	145	-
No.	MBD 412	3970144	1″1/4	1″1/2	433	217	145	-
MULTIBLO GAS TRAINS	MBD 412 CT	3970197	1″1/4	1″1/2	433	217	262	Incorporated
AST	MBD 415	3970180	1″1/2	1″1/2	523	250	100	-
Z o	MBD 415 CT	3970198	1″1/2	1″1/2	523	250	227	Incorporated
	MBD 420	3970181	2″	2″	523	300	100	-
	MBD 420 CT	3970182	2″	2″	523	300	227	Incorporated
	CB 40/1	3970145	1″1/2	1″1/2	891	261	195	-
	CB 50/1	3970146	2″	2″	986	328	250	-
۵.,	CB 50/1 CT	3970160	2″	2″	986	328	250	Incorporated
COMPOSED GAS TRAINS	CBF 65/1	3970147	DN 65	DN 65	874	356	285	-
PO	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	Incorporated
ON	CBF 80/1	3970148	DN 80	DN 80	934	416	285	-
00	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	Incorporated
	CBF 100/1	3970149	DN 100	DN 100	1054	501	350	-
	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	Incorporated

PRESSURE DROP DIAGRAMS

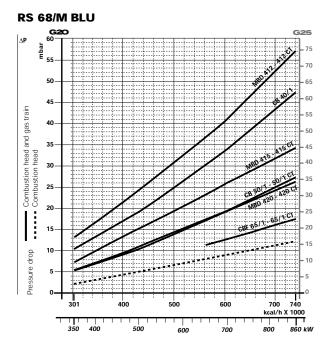
The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.


The value thus calculated represents the minimum required input pressure to the gas train.

RS 45/M BLU G25 G20 ΔF L 160 траг 120 train and gas head **20** Combustion P Combustion P 09 ustion ŝ į I Pressure drop i de la com 473 500 kcal/h X 1000 , kW

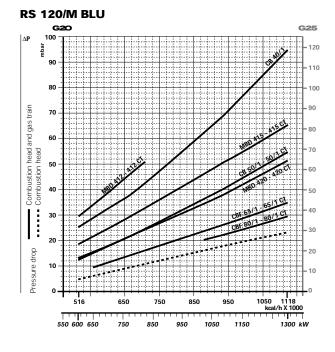
NATURAL GAS

Gas train	Code	Adapter	SC
MBD 407	3970076	3000824	Accessory
MBD 410	3970077	3000824	Accessory


Gas train	Code Adapter		SC
MBD 412	3970144	-	Accessory
MBD 412 CT	3970197	-	Incorporated
CB 40/1	3970145	-	Accessory
MBD 415	3970180	-	Accessory
MBD 415 CT	3970198	-	Incorporated
CB 50/1	3970146	3000822	Accessory
CB 50/1 CT	3970160	3000822	Incorporated
MBD 420	3970181	3000822	Accessory
MBD 420 CT	3970182	3000822	Incorporated

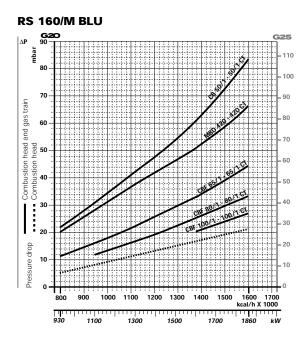
T

Ê



NATURAL GAS

-


Gas train	Code	Adapter	SC	
Cas train	Code	Анарсы	50	
MBD 412	3970144	3000843	Accessory	
MBD 412 CT	3970197	3000843	Incorporated	
CB 40/1	3970145	3000843	Accessory	
MBD 415	3970180	3000843	Accessory	
MBD 415 CT	3970198	3000843	Incorporated	
CB 50/1	3970146	-	Accessory	
CB 50/1 CT	3970160	-	Incorporated	
MBD 420	3970181	-	Accessory	
MBD 420 CT	3970182	-	Incorporated	
CBF 65/1	3970147	3000825	Accessory	
CBF 65/1 CT	3970161	3000825	Incorporated	

Gas train	Code	Adapter	SC
MBD 412	3970144	3000843	Accessory
MBD 412 CT	3970197	3000843	Incorporated
CB 40/1	3970145	3000843	Accessory
MBD 415	3970180	3000843	Accessory
MBD 415 CT	3970198	3000843	Incorporated
CB 50/1	3970146	-	Accessory
CB 50/1 CT	3970160	-	Incorporated
MBD 420	3970181	-	Accessory
MBD 420 CT	3970182	-	Incorporated
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3970162	3000826	Incorporated

NATURAL GAS

Gas train	Code	Adapter	SC
CB 50/1	3970146	-	Accessory
CB 50/1 CT	3970160	-	Incorporated
MBD 420	3970181	-	Accessory
MBD 420 CT	3970182	-	Incorporated
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3970162	3000826	Incorporated
CBF 100/1	3970149	3010127	Accessory
CBF 100/1 CT	3970163	3010127	Incorporated

▶ note Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

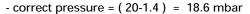
▼

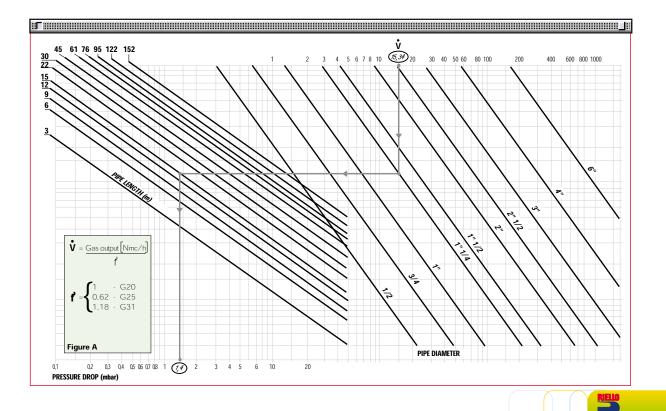
SELECTING THE FUEL SUPPLY LINES

▼

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.


Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.


Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length. Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop on the botton scale (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	 gas used gas output pressure at the gas meter gas line length conversion coefficient 	G25 9.51 mc/h 20 mbar 15 m 0.62 (see figure A)
- equivalent	= 15.34 mc/h	

- once the value of 15.34 has been identified on the output scale ($\check{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

VENTILATION

The ventilation circuit produces low noise levels with high performance pressure and air output, in

despite of the compact dimensions. Except for the RS 160/M BLU model, the use of reverse curve blades and soundproofing material keeps noise level very

low. In the RS 160/M model, noise has been reduced by the special design of the air suction circuit.

A variable profile cam connects the fuel and air regulations, ensuring high fuel efficiency at all firing ranges.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

Models with a special control panel and servomotor are suitable for steam generators which conform to TRD 604 (Germany) and NBN (Belgium).

Ē

T

5

Example of the servomotor for air/gas setting

COMBUSTION HEAD

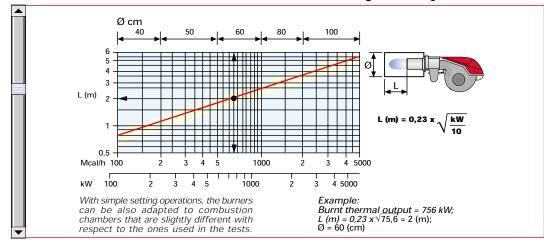
Different lengths of the combustion head can be chosen for the RS/M series of burners.

The choice

depends on the thickness of the front panel and the type of boiler.

Depending on the type of generator, check that the penetration of the head into the combustion chamber is correct.

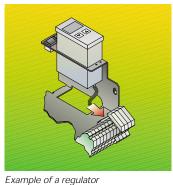
The internal positioning of the combustion head can easily be adjusted to the maximum defined output by adjusting a screw fixed to the flange.



Example of a RS 45/M BLU burner combustion head

Example of a RS 68-120-160/M BLU burner combustion head

Dimensions of the combustion chambers used in the testing laboratory



OUTPUT SETTING •

Ŧ

Ê

The RS/M BLU series of burners can have "two-stage progressive" or "modulating" setting."

On "two-stage progressive" setting, the burner gradually adapts the output to the requested level, by varying between two pre-set levels (see figure A).

"Two-stage progressive" setting

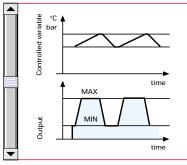


Figure A

On "modulating" setting, "Modulating" setting normally required in steam generators, in superheater boilers or diathermic oil burners, a specific regulator and probes are required. These are supplied as accessories that must be ordered separately. The burner can work for long periods at intermediate output levels (see figure B).

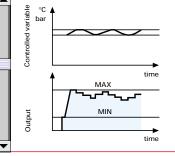


Figure B

FIRING

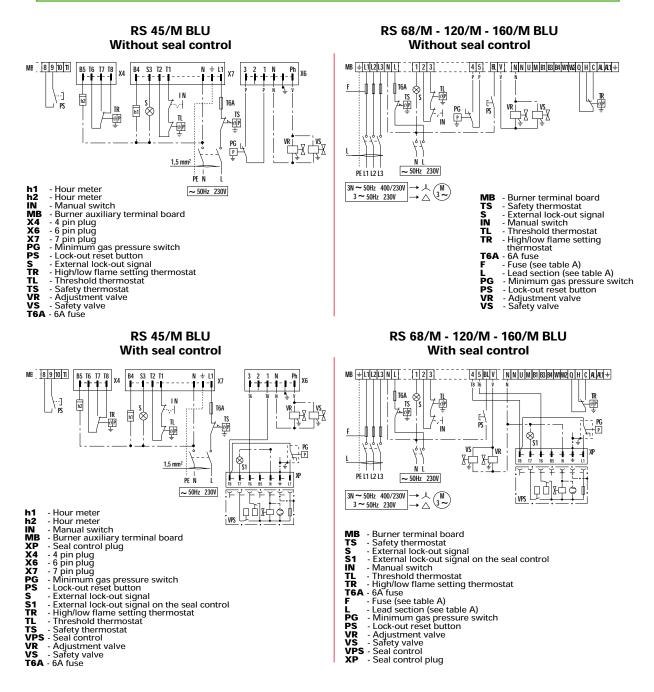
TL TR 颲 œ 82,5 87,5 ₩ max . الكرا Å Å o-[time (s)

0″	The burner begins the firing cycle
2,5"-26,5"	The servomotor opens the air damper at the
	maximum output
26,5"-52,5"	The motor starts : pre-purge phase
52,5"-71"	The servomotor sets the air damper and the butterfly
	valve at minimum output
82,5"-85,5"	Pre-ignition
85,5″	Firing : all the solenoid gas valves are supplied
85,5"-87,5"	After-ignition
96″	Output can be increased

RS 45/M - 68/M - 120/M - 160/M BLU

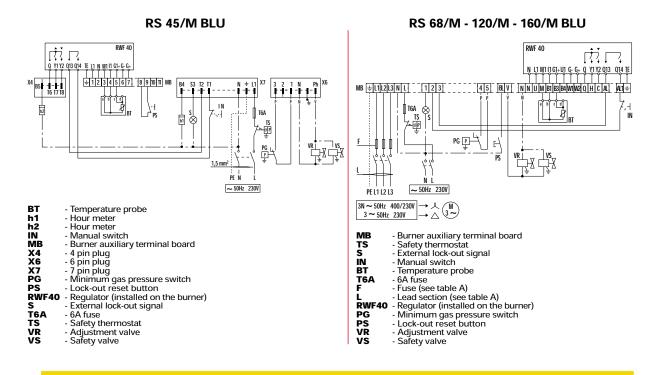
ELECTRICAL CONNECTIONS *To be made by the installer*

Electrical connections must be made by qualified and skilled personnel, according to the local regulations.

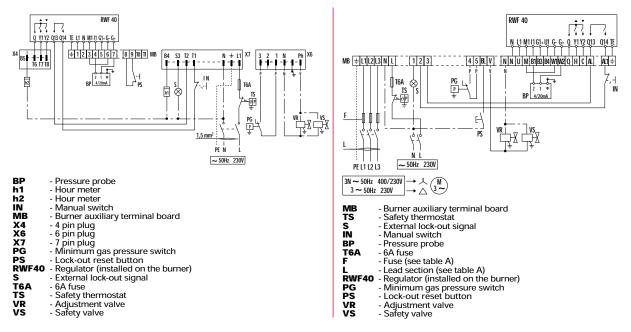


Ŧ

Ê


Example of the terminal board for electrical connections for the RS 68-120-160/M BLU models

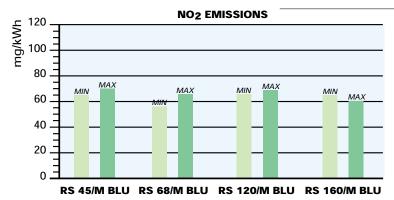
" TWO-STAGE PROGRESSIVE" SETTING

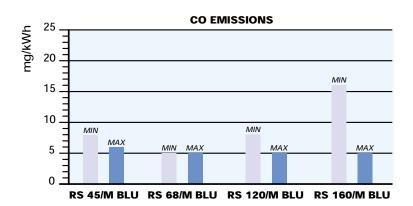

" MODULATING" SETTING - temperature probe

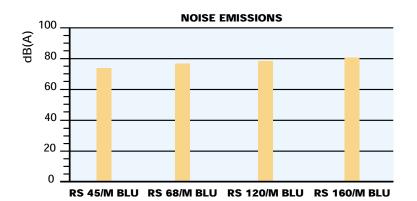
"MODULATING" SETTING - pressure probe

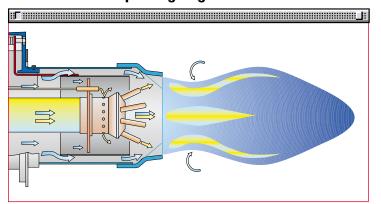
RS 45/M BLU

RS 68/M - 120/M - 160/M BLU


The following table shows the supply lead sections and the type of fuse to be used.


N	/lodel ▼RS 45/M BLU		▼RS 68	▼ RS 68/M BLU ▼ RS 120)/M BLU	▼RS 160)/M BLU
		230V	230V	400V	230V	400V	230V	400V
F	A	T6	T16	T10	T16	T10	T25	T20
L	_ mm²	1,5	1,5	1,5	1,5	1,5	2,5	2,5


Table A

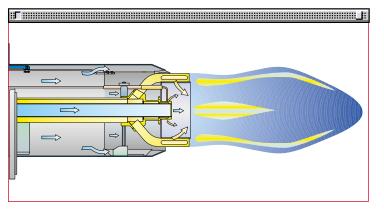


The NO₂ and CO emissions have been measured in various models at minimum and maximum output, according to EN 676 standard.

The noise emission have been measured at maximum output.

The RS/M BLU series combustion heads reduce polluting emissions thanks to their special design which optimises the air fuel mix.

Combustion head operating diagram of RS 45/M BLU model

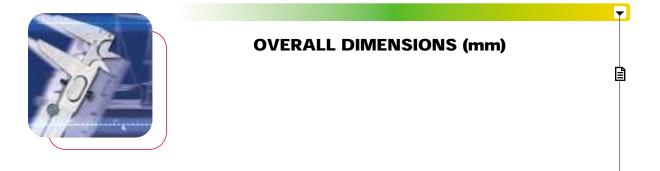

▼

The RS 45/M BLU model has an oblique radial pipe distributor through which gas is injected directly into the passing air flow for a perfect distribution.

This prevents no homogeneous concentrations in the flame with areas of high oxidation; part of the premixed gas/air is injected into the centre of the flame.

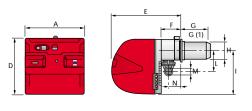
These methods produce a very stable flame with gradual and progressive combustion as the flame develops, thus giving polluting emission values below even the most restrictive norm values.

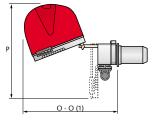
Combustion head operating diagram of RS 68/M - 120/M - 160/M BLU models

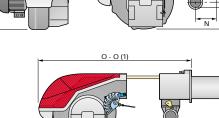


In RS 68/M – 120/M – 160/M BLU models part of the gas is distributed through outlets which are perpendicular to the air flow, while the remaining gas is injected directly into the centre of the flame.

This prevents no homogeneous concentrations in the flame with areas of high oxidation,


producing very stable flame with gradual and progressive combustion as the flame develops, thus giving polluting emission values below even the most restrictive norm values.



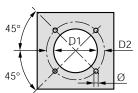


BURNERS

RS 45/M BLU

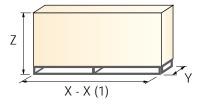
RS 68/M - 120/M - 160/M BLU

G-G(1)


F

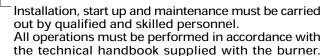
Model	A	В	С	D	Е	F	G - G (1)	Н	I	L	М	Ν	O - O(1)	Ρ
RS 45/M BLU	476	-	-	474	580	164	229 - 354	160	352	168	1″1/2	108	810 - 810	719
▶ RS 68/M BLU	511	296	215	555	840	214	255 - 390	189	430	221	2″	134	1161 - 1296	-
RS 120/M BLU	553	338	215	555	840	214	255 - 390	189	430	221	2″	134	1161 - 1296	-
▶ RS 160/M BLU	681	366	315	555	847	221	373 - 503	221	430	186	2″	141	1395 - 1535	-

D


(1) dimension with extended head

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
RS 45/M BLU	165	224	M8
▶ RS 68/M BLU	195	275-325	M12
▶ RS 120/M BLU	195	275-325	M12
▶ RS 160/M BLU	230	325-368	M16


PACKAGING

Model	X - X (1)	Y	Ζ	kg
RS 45/M BLU	1015 - 1015	500	630	41
▶ RS 68/M BLU	1190 - 1340	692	740	70
• RS 120/M BLU	1190 - 1340	692	740	76
▶ RS 160/M BLU	1250 - 1400	785	725	89

(1) dimension with extended head

INSTALLATION DESCRIPTION

FIXING THE BURNER TO THE BOILER AND INITIAL SETTINGS

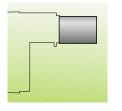
- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.

∎

- Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.
- Refit the burner casing to the slide bars.
- Close the burner, sliding it up to the flange.

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.
- Turn the motor to check rotation direction (if it is a three-phase motor).
- Perform a first ignition calibration on the gas train.
- On start up, check:
 - Gas pressure at the combustion head (to max. and min. output)
 - Combustion quality, in terms of unburned substances and excess air.


ACCESSORIES

•

B

Extended heads

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

Combustion head extension kits			
Burner	'Standard head' length (mm)	'Extended head' length (mm)	Kit code
RS 45/M BLU	229	354	3010240
RS 68/M BLU	255	390	3010177
RS 120/M BLU	255	390	3010177
RS 160/M BLU	373	503	3010193

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

Head length reduction kit		
Burner	Spacer thickness S (mm)	Kit code
RS 45/M BLU	90	3010095
RS 68/M - 120/M BLU	135	3010129
RS 160/M BLU	110	3000722

Continuous ventilation kit

If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

Continuous ventilation kit		
Burner	Kit code	
RS 45/M BLU	3010094	
RS 68/M - 120/M - 160/M BLU	3010094	

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

Sound proofing box		
Burner	Box type	Box code
RS 45/M BLU	C2	3000777
RS 68/M - 120/M - 160/M BLU	C3	3000778

Head kit for " reverse flame chamber"

In certain cases, the use of the burner on reverse flame boilers can be improved by using an additional Pipes Kit.

▼

Head kit for "reverse flame chamber"		
Burner	Kit code	
RS 68/M BLU	3010247	
RS 120/M BLU	3010248	
RS 160/M BLU	3010249	

Accessories for modulating setting

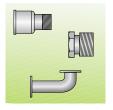
To obtain modulating setting, the RS/M BLU series of burners requires a regulator with three point outlet controls. The relative temperature or pressure probes fitted to the regulator must be chosen on the basis of the application.

The following table lists the accessories for modulating setting with their application range.

REGULATOR		PROBE		
Туре	Code	Туре	Range (°C) (bar)	Code
RWF 40	3010212	Temperature PT 100	-100 ÷ 500°C	3010110
		Pressure 4 ÷ 20 mA	0 ÷ 2,5 bar	3010213
		Pressure 4 ÷ 20 mA	0 ÷ 16 bar	3010214

Depending on the servomotor fitted to the burner, a three-pole potentiometer (1000 Ω) can be installed to check the position of the servomotor. The KITS available for the various burners are listed below.

Potentiometer kit		
Burner	Kit code	
RS 45/M BLU	3010109	
RS 68/M - 120/M - 160/M BLU	3010021	



GAS TRAIN ACCESSORIES

Adapters

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

Adapters			
Burner	Gas train	Dimensions	Adapter code
RS 45/M BLU	MBD 407 - MBD 410	3/4" 1" 1/2	3000824
K3 43/IVI DEU	MBD 420 - CB 50/1	2" 1" 1/2	3000822
	MBD 412 - MBD 415 - CB 4	10/1 1" 1/2 2 "	3000843
RS 68/M BLU	CBF 65/1	DN 65 2"1/2 2" 2" 2"	3000825
	MBD 415 - CB 40/1	1" 1/2 2"	3000843
RS 120/M BLU	CBF 65/1	DN 65 2"1/2 2" 2" 2" 2"	3000825
	CBF 80/1	DN 80 2"1/2 2"	3000826
RS 160/M BLU	CBF 65/1	DN 65 2"1/2 2"	3000825
KS TOU/IVI BLU	CBF 80/1	DN 80 2"1/2 2"	3000826
	CBF 100/1	DN 100	3010127

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The seal control is type VPS 504.

Seal control kit			
Burner	Gas train	Kit code	
RS 45/M BLU	CB 40/1 - CB 50/1 - MBD 407 - 410 - 412 - 415 - 420	3010123	
RS 68/M BLU	CB 40/1 - CB 50/1 - MBD 412 - 415 - 420 - CBF 65/1	3010123	
RS 120/M BLU	CB 40/1 - CB 50/1 - MBD 415 - 420 - CBF 65/1 - CBF 80/1	3010123	
RS 160/M BLU	CB 50/1 - MBD 420 - CBF 65/1 - CBF 80/1	3010123	

Ť

₿

Stabiliser spring

▼

Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range

	Stabiliser springs	
Gas train	Spring	Code
CBF 65/1 - CBF 80/1	Red from 25 to 55 mbar	3010133
CBF 100/1	Red from 25 to 55 mbar	3010134
CBF 65/1 - CBF 80/1	Black from 60 to 110 mbar	3010135
CBF 100/1	Black from 60 to 110 mbar	3010136
CBF 65/1 - CBF 80/1	Pink from 90 to 150 mbar	3090456
CBF 100/1	Pink from 90 to 150 mbar	3090489

Please refer to the technical manual for the correct choice of spring.

SPECIFICATION

T

₿

A specific index guides your choice of burner from the various models available in the RS/M BLU series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES R BURNERS Series : R Natural Gas Fuel: S Light oil LS Light oil/Methane Ν Heavy oil Size Setting : /1 Single stage Two stage /M Modulating Emission : Class 1 EN267 - EN676 MZ Class 2 EN267 - EN676 BLU Class 3 EN267 - EN676 Class 1 EN267 MX Class 3 EN676 Head : тс Standard head ΤL Extended head Diagnostic : LP Led panel ST Status panel Flame control system : FS1 Standard (1 stop every 24 h) FS2 Continuous working (1 stop every 72 h) Electrical supply to the system : 1/230/50 1/230V/50Hz 3/230/50 3/230V/50Hz 3/400/50 3N/400V/50Hz 3/230-400/50 3/230V/50Hz - 3N/400V/50Hz 3/220/60 3/220V/60Hz 3/380/60 3N/380V/60Hz 3/220-380/60 3/220/60Hz - 3N/380V/60Hz

Auxiliary voltage: 230V/50-60Hz 230/50-60 110V/50-60Hz 110/50-60 ID: Differential switch S 120 /M BLU TC FS1 3/230-400/50 230/50-60 R **BASIC DESIGNATION**

EXTENDED DESIGNATION

230/50-60

230/50-60

LIST OF AVAILABLE MODELS RS 45/M BLU TC FS1 1/230/50 230/50-60 RS 120/M BLU TC FS1 3/230-400/50 230/50-60 RS 120/M BLU TL FS1 RS 120/M BLU TC FS2 RS 45/M BLU TL FS1 1/230/50 RS 45/M BLU TC FS2 1/230/50 230/50-60 3/230-400/50 230/50-60 230/50-60 3/230-400/50 230/50-60 RS 45/M BLU TL FS2 1/230/50 230/50-60 RS 120/M BLU TL FS2 3/230-400/50 230/50-60 RS 45/M BLU TC FS1 1/230/50 RS 45/M BLU TL FS1 1/230/50 RS 45/M BLU TC FS2 1/230/50 160/M BLU TC FS1 230/50-60 ID RS 3/230-400/50 230/50-60 RS 160/M BLU TL RS 160/M BLU TC 230/50-60 ID FS1 3/230-400/50 230/50-60 230/50-60 ID FS2 3/230-400/50 230/50-60 RS 45/M BLU TL FS2 1/230/50 230/50-60 ID RS 160/M BLU TL FS2 3/230-400/50 230/50-60 RS 68/M BLU TC FS1 3/230-400/50 230/50-60 RS 68/M BLU TL FS1 RS 68/M BLU TC FS2 3/230-400/50 230/50-60

Other versions are available on request

RS 68/M BLU TL FS2 3/230-400/50

3/230-400/50

PRODUCT SPECIFICATIONS

Burner:

Monoblock forced draught LOW NOx gas burner with two stage progressive or modulating setting, with a specific kit, fully automatic, made up of:

- air suction circuit lined with sound-proofing material
- fan with reverse curve blades (straight blades on the 160/M BLU model) high performance with low sound emissions
- air damper for air flow setting and butterfly valve for regulating fuel output controlled by a servomotor with variable cam
- starting motor at 2800 rpm, three-phase 400V with neutral, 50Hz (single-phase, 230V and 50Hz for the 45/M BLU model)
- low emission combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- maximum gas pressure switch to stop the burner in the case of excess pressure on the fuel supply line
- minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
- flame control panel, fitted with control functions for the correct positioning of the servomotor - burner on/off selection switch
- manual or automatic output increase/decrease selection switch
- flame inspection window
- slide bars for easier installation and maintenance
- protection filter against radio interference
- IP 44 electric protection level.

Gas train:

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter of 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with: - filter

- stabiliser
- minimum gas pressure switch
- safety valve
- valve seal control (for output > 1200 kW)
- one stage working valve with ignition gas output regulator.

According to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- wiring loom fittings for the electrical connection (for RS 45/M BLU model)
- 2 slide bar extensions (for extended head models and RS 160/M BLU)
- instruction handbook for installation, use and maintenance
- spare parts catalogue.

Available accessories to be ordered separately:

- Head extension kit
- Head length reduction kit
- Continuous ventilation kit
- Sound-proofing box
- RWF 40 output regulator
- Pressure probe 0 ÷ 2.4 bar
- Pressure probe 0 ÷ 16 bar
- Temperature probe -100 ÷ 500°C
- Potentiometer kit for the servomotor
- Gas train adapter
- Seal control kit
- Stabiliser spring.

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

MODULATING LOW NOX GAS BURNERS

CE

MODUBLOC MB SE BLU SERIES	▶ MB 4 SE BLU 1000 ÷ 4600 kW
	▶ MB 6 SE BLU 1100÷ 5900 kW
A REAL PROPERTY AND A REAL	▶ MB 8 SE BLU 1500÷ 7500 kW
the second second	▶ MB 10 SE BLU 2000 ÷ 8500 kW

The MODUBLOC MB SE BLU series of burners are characterised by a monoblock structure that means all necessary components can be combined in a single unit, making installation easier and faster.

The series covers a firing range from 1000 to 8500 kW, and they have been designed for use in hot water boilers or industrial steam generators.

Adjustment is modulating, through an innovative electronic module, which gives control of the air/fuel ratio and PID control of the generator temperature or pressure.

The mechanisms of regulation allow to catch up a high modulation ratio on all firing rates range.

The burner can, therefore, supply with precision the demanded power, guaranteeing a high efficiency system level and the stability setting, obtaining fuel consumption and operating costs reduction.

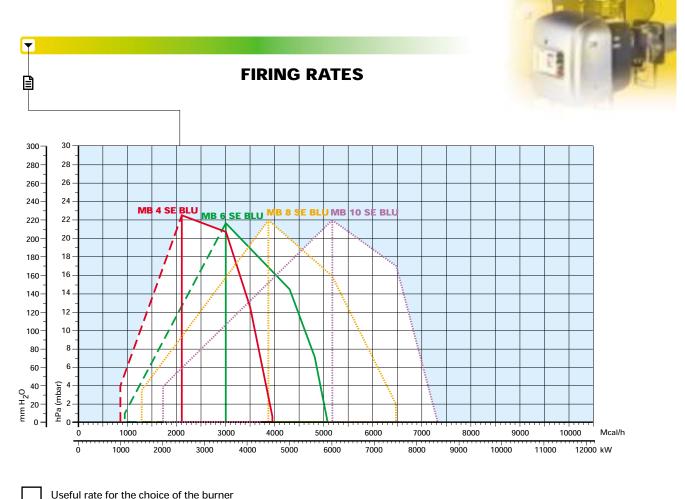
The combustion head, studied with advances simulation devices, guarantees reduced polluting emissions.

An exclusive design, with fan unit fitted on line with the combustion head, guarantees low sound emissions, reduced dimensions, easy use and maintenance.

Ξ

Ē

TECHNICAL DATA


Model		▼ MB 4 SE BLU	▼ MB 6 SE BLU	▼MB 8 SE BLU	▼ MB 10 SE BLU			
				1-1-1				
Setting type		modulating						
Modulating ratio at max. output		5 ÷ 1						
Servo- motor				MM 10005 (gas)				
	run time	S						
Heat		kW	1000/2450÷4600	1100/3600÷5900	1500/4500÷7500	2000/6000÷8500		
output Mcal/h		860/2107÷3956	946/3096÷5074	1290/3870÷6450	1720/5160÷7310			
	ng temperature	°C min./max.	0/40					
	orific value gas G20	kWh/Nmc	10					
	y gas G20	kg/Nmc		0,				
-	t gas G20	Nmc/h	100/245÷460	110/360÷590	150/450÷750	200/600÷850		
	Net calorific value gas G25 kWh/Nmc		8,6					
	y gas G25	kg/Nmc		0,				
	t gas G25	Nmc/h	116/285÷535	128/419÷686	174/523÷872	233/698÷988		
Net calc	let calorific value gas LPG kWh/Nmc			25				
Densit	y gas LPG	kg/Nmc	2,02					
Outpu	t gas LPG	Nmc/h	-					
Fan		type	reverse curve blades					
Air ten	nperature	°C max	60					
Electrical supply F		Ph/Hz/V	3N/50/230-400~(±10%)					
Auxilia	Auxiliary electrical supply Ph/Hz/V		1/50/230 ~ (±10%)					
Contro	ol box	type	LFL 1.333					
Total e	electrical power	kW	13	15	26			
Auxiliary electrical power kW Protection level IP Electric motor power kW		kW	2	2	0,55			
		IP	40					
		kW	11	13	22			
Rated	motor current	Α	38 - 22	46,7 - 27	67,5 - 39			
Motor start current		Α	7,3 x I nom	7,6 x I nom	7,9 x 3	I nom		
Motor	protection level	IP		5	5			
Ignitio	n	V1 - V2	230V -	2x5 kV	230V - 2x6 kV			
transfo	ormer	l1 - l2	1,9A - 30mA		1,9A - 30mA			
Operat	tion		Intermittent (at least one stop every 24 h) or Continuous as optional (at least one stop every 72 h)					
Sound	Sound pressure dBA		82	85	88			
Sound	output	w						
CO emissions mg/kWh			< 10					
Sound pressure ubA o2 o3 Sound output W CO emissions mg/kWh <				80				
Directive			90/396 - 89/336 - 73/23 EEC					
According to			EN 676					
Certifications			in progress (CE)					

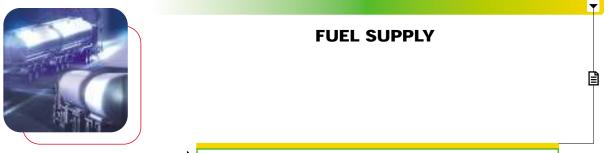
Ŧ

Ē

Reference conditions: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 meters a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Useful rate for the choice of the burner


Modulating rate

Firing rates IN PROGRESS

Test conditions conforming to EN 676:

Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 meters a.s.l.

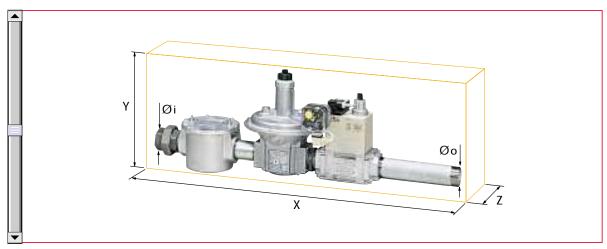
GAS TRAIN

The burners are fitted with a butterfly valve to regulate the fuel, controlled by the main management module of burner through a high

precision servomotor. Fuel can be supplied either from the right or left sides, on the basis of the application requirements. A maximum gas pressure switch stops the burner in case of excess pressure in the fuel line.

The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

The gas trains are "Composed" type (assembly of the single components).



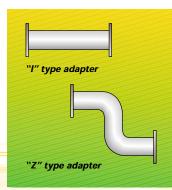
Example of the MB 4 SE BLU gas adjustment butterfly valve

1	Manual valve
2	Anti-vibration joint
3	Pressure gauge with pushbutton cock
4	Filter
5	Pressure regulator (vertical)
6	Minimum gas pressure switch
7	VS safety solenoid (vertical)
8	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
9	Gasket and flange supplied with the burner
10	Gas adjustment butterfly valve
11	Burner
12	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
13	Gas train-burner adapter
14	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

Example of gas train "COMPOSED" type without seal control

▼


Gas trains are approved by standard EN 676 together with the burner.

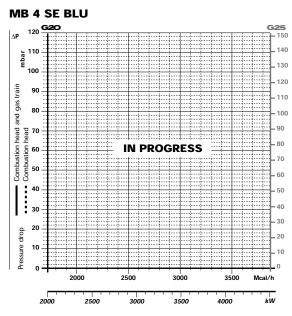
The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to MB SE BLU burners, intake and outlet diameters and seal control if fitted.

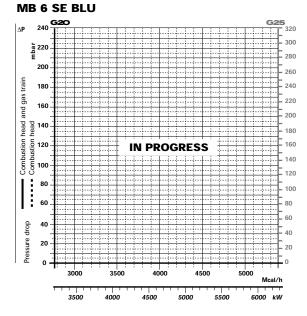
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

	Name	Code	Øi	Øo	X mm	Y mm	Z mm	SC
SED SED	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	incorporated
COMPOSED GAS TRAINS	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	incorporated
	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	incorporated
0 S	CBF 125/1 CT	3970196	DN 125	DN 125	1166	686	400	incorporated

The maximum gas pressure of gas train "Composed" type is 500 mbar.

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

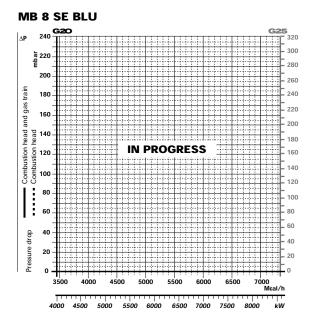

For further information see paragraph "Accessories".


PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

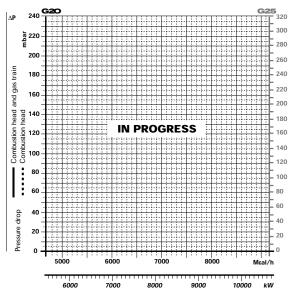
The value thus calculated represents the minimum required input pressure to the gas train.

Gas train	Code	Adapter	SC
CBF 65/1 CT	3970161	3010221(I) 3010225(Z)	incorporated
CBF 80/1 CT	3970162	3010222(I) 3010226(Z)	incorporated
CBF 100/1 CT	3970163	3010223(I) 3010227(Z)	incorporated
CBF 125/1 CT	3970196	3010224(I) 3010228(Z)	incorporated


Gas train	Code	Adapter	SC
CBF 65/1 CT	3970161	3010221(I) 3010225(Z)	incorporated
CBF 80/1 CT	3970162	3010222(I) 3010226(Z)	incorporated
CBF 100/1 CT	3970163	3010223(I) 3010227(Z)	incorporated
CBF 125/1 CT	3970196	3010224(I) 3010228(Z)	incorporated

NATURAL GAS

T


NATURAL GAS

Gas train	Code	Adapter	SC
CBF 65/1 CT	3970161	3010221(I) 3010225(Z)	incorporated
CBF 80/1 CT	3970162	3010222(I) 3010226(Z)	incorporated
CBF 100/1 CT	3970163	3010223(I) 3010227(Z)	incorporated
CBF 125/1 CT	3970196	3010224(I) 3010228(Z)	incorporated

MB 10 SE BLU

-

Gas train	Code	Adapter	SC
CBF 65/1 CT	3970161	3010221(I) 3010225(Z)	incorporated
CBF 80/1 CT	3970162	3010222(I) 3010226(Z)	incorporated
CBF 100/1 CT	3970163	3010223(I) 3010227(Z)	incorporated
CBF 125/1 CT	3970196	3010224(I) 3010228(Z)	incorporated

note

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

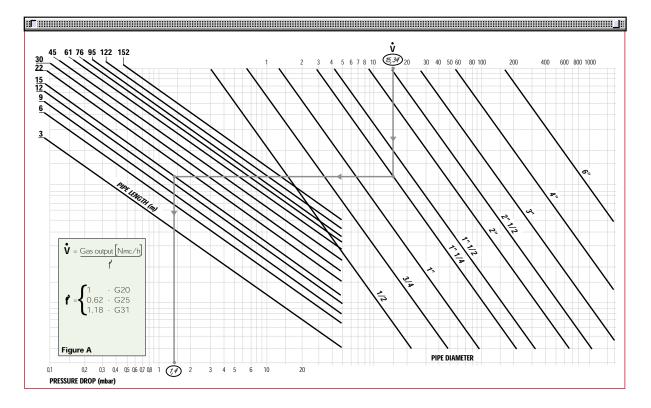
The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale ($\dot{\mathbf{V}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.


Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	r 20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalent	t methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.5\\ 0.6 \end{bmatrix}$	$\left[\frac{1}{2}\right] = 15.34 \text{ mc/h}$

- once the value of 15.34 has been identified on the output scale ($\mathbf{\check{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

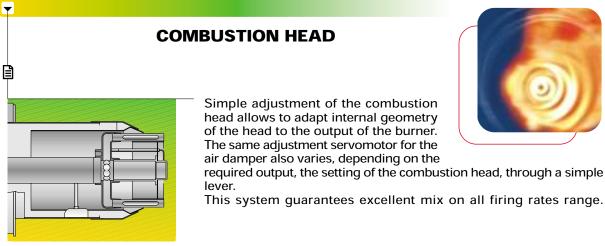
move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
 subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

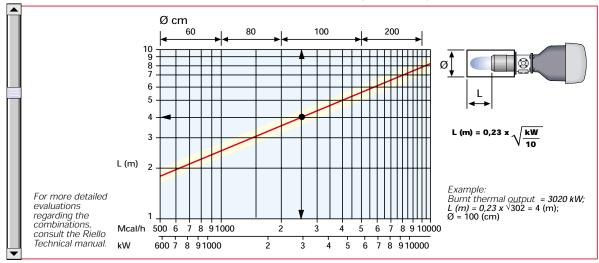
- correct pressure = (20-1.4) = 18.6 mbar

VENTILATION

B

Example of the servomotor and dampers for air setting


All the burners in the MB series are fitted with fans with reverse curve blades, which give excellent performance and are fitted in line with the


combustion head. The air flow and sound-deadening materials that are used in the construction are designed to reduce sound emissions to the minimum and guarantee high levels of performance in terms of output and air pressure.

A high precision servomotor through the main management module installed on each burner of MB series, controls the air dampers position constantly, guaranteeing an optimal fuel-air mix. On request, the

Modubloc burners can be supplied with the "inverter" configuration, which means they are fitted with a device for varying the amount of combustion air through a variable speed action of the fan motor. The addition of the interface inverter module means the burner can work at reduced speed, with further benefits in terms of sound emissions, especially during the night when the perception threshold is lower.

Example of a MODUBLOC MB SE BLU burner combustion head

Dimensions of the combustion chambers used in the testing laboratory

SETTING

OUTPUT SETTING

Main management module

mechanical regulation cams on traditional modulating burners.

Inside each MB series burner main electronic microprocessor management panel, there is a PID regulator to control the boiler temperature or pressure . Variables can be controlled by specific accessory probes (see paragraph "Accessories).

The burner can run for a long time on intermediate output settings (see fig. A)

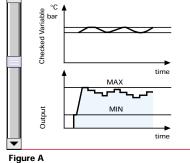
The main electronic management panel shows all operational parameters in real time, so as to keep a constant check on the burner:

- servomotor angle
- required set-point and actual set-point
- fuel consumption (measured indirectly)
- smoke and environmental temperature (with EGA module)
- CO₂, CO, O₂, NO e SO₂ value (with EGA module)
- burner stage

The main electronic management panel operations can be increased by installing accessory modules as illustrated below. For available module codes see "Accessories".

Special software can be loaded into a portable PC to input and download data through an interface cable to an infrared device on the front panel of the MB series burner.

This is useful both during burner start-up and commissioning phases, and maintenance.


Each MB series burner has a main electronic microprocessor management panel, which controls both the fuel flow servomotor (with a pressure regulator) and air flow servomotor (with air dampers).

Ē

Hysteresis is prevented by the precise control of the two servomotors and the software link.

The high precision regulation is due to the absence of mechanical clearance normally found in

"modulating" setting

D.T.I. Module

D.T.I. module (Data Transfer interface)

This electronic module can transfer multiple signals from different local modules to a BMS supervisor software system (Building Management System).

Examples of local modules:

- main management module on each MB series burner which sends and receives signals to indicate or modify the burner working stage
- modules which send and receive signals from the various devices in the boiler room and system.
- e.g. analog modules I/Ŏ
 - digital modules /O
 - EGA modules

(For further information see relative paragraph)

Up to ten MB series burners, with or without the EGA module, ten analog modules I/O and ten digital modules I/O can be linked up.

The DTI module uses MODUBUS interface protocol as a standard protocol to external supervisory systems (a type of field bus widely used in industrial communication systems).

This type of protocol is used when sample signal rates which need checking are low e.g. for temperature, pressure or pump and fan systems.

With special electronic interface boards other communication protocols (e.g. PROFIBUS) can be used.

DTI module information is transferred directly or by modem to supervisory systems by RS 232 or RS 422 (in the case of long distance up to 1 km) connections.

The supervisory system can also manage a series of MB burners installed in the same system; each main electronic management panel comes with the software needed to manage such a series of burners.

Digital I/O Module

Digital I/O Module

Digital modules I/O transfer in-coming and out-going information such as working stages and alarms, from the boiler room or from the system in general where one or more MB series burners are installed to a remote supervisor system.

Digital modules I/O manage both input and output signals, e.g.:

- n. 16 input signals (free contacts max. current 1 A)
- n. 8 output signals (free contacts max. current 1 A)

The out-going signals can control any device in the boiler room, e.g. pumps, fans, etc...

The in-coming signals can check any device in the boiler room, e.g. pumps, fans, etc... and receive warning signals such as over heating, excess pressure.

Up to ten I/O digital modules can be linked together. Fig. C shows an example of sequencing I/O digital modules linked to a remote supervisor system by a DTI interface.

Analog I/O module

I/O Analog modules transfer in-coming and out-going information about burner working stages and other devices in the boiler room or in the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O Analog modules manage both input and output signals, such as 4-20 mA or 0-10 Volt, e.g.:

- n. 6 input signals

- n. 6 output signals

These modules can be connected to the remote supervisor system in two different ways:

Analogic I/O Module

- " LOW LEVEL" connection

each I/O analog module transmits information from a single burner to a remote supervisor system using 4-20 mA or 0-10 Volt signals, e.g.

boiler temperature/pressure, output level, boiler set-point, servomotor angle position, etc. The system becomes operational when each single I/O analog module is programmed by a portable PC and appropriate software.

The set point can be modified by a single in-coming 4–20 mA or 0-10 Volt signal from the supervisor system.

Here is an example of a "LOW LEVEL" connection between I/O analogue modules and remote supervisor system. (figure B)

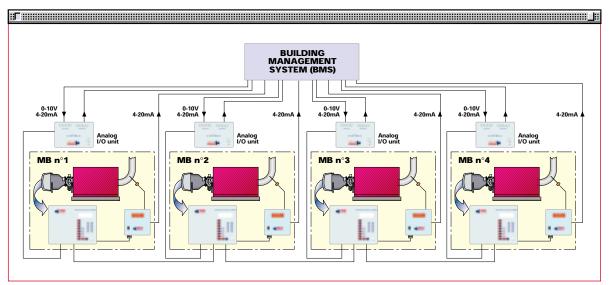


Figura B - "LOW LEVEL" connection

- "HIGH LEVEL" connection

each I/O analog module transmits in-coming and out-going information about boiler room temperature/pressure, pump rpm, set point, to a remote supervisor system using 4-20 mA or 0-10 Volt signals, through DTI interface.

Up to ten I/0 digital modules can be linked together.

▼

Here is an example of an "HIGH LEVEL" connection between I/O analogue modules and remote supervisor system. (figure C)

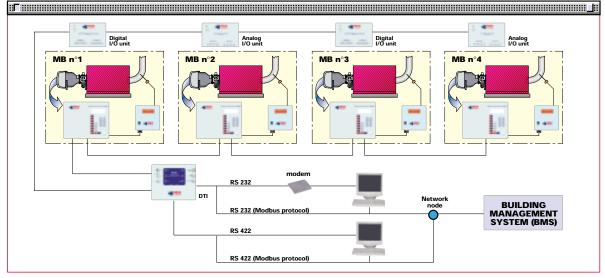


Figure C - "HIGH LEVEL" connection

E.G.A. Module

software.

E.G.A. module (Exhaust Gas Analyser)

EGA modules measure some of the exhaust gas substances. These modules come with an exhaust gas sampler probe and exhaust gas temperature probe (0-400 °C).

Four different EGA modules are available depending on the type of substance to be checked. (For further information see "accessories" paragraph).

Thanks to EGA module connected to the main electronic microprocessor management panel on each MB series burner, the burner can adjust its working parameters on the basis of continuous combustion gas analysis.

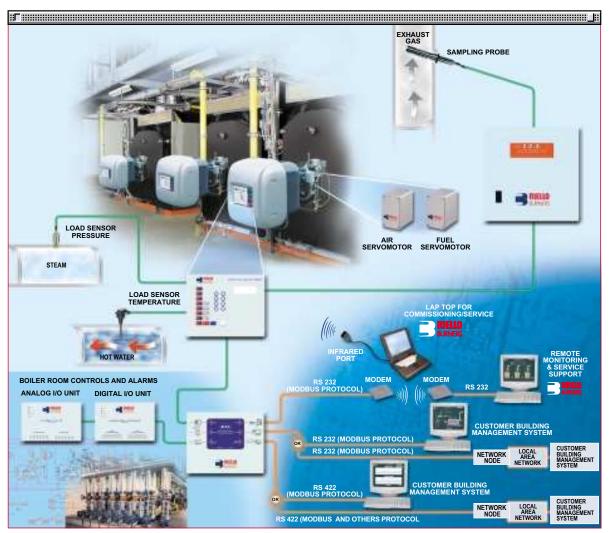
The EGA module creates a closed control link which increases efficiency by up to max 5%.

The following functions are also available:

- smoke and environmental temperature measurement
- viewing of measured parameters on main management display panel
- burner lock-out when some parameters exceed permitted levels (settable)
- combustion optimisation with automatic air damper setting (adjustment O2 level)
- automatic re-adjustment at each firing

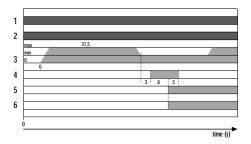
The information from EGA modules can be sent to a remote supervisor system in two ways:

- through six signals (4-20mA) on a terminal board (see layout fig. B) To activate this operation each single EGA module must be programmed using a PC with appropriate
- through the DTI interface module (see layout fig. C)


Connections between Modules

A data cable type BELDEN 9501 or similar, which can be ordered as an accessory (see accessories paragraph), must be used to connect the above modules.

note To develop the various layouts or for further information about single modules please contact the Riello Burners Technical Office.


The following diagram summarises how MB series burners and modules can be used for the supervision of boiler rooms or systems in general.

▼

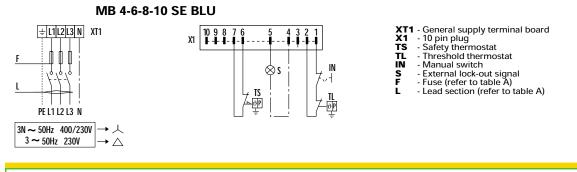
Example of boiler room management system

IGNITION

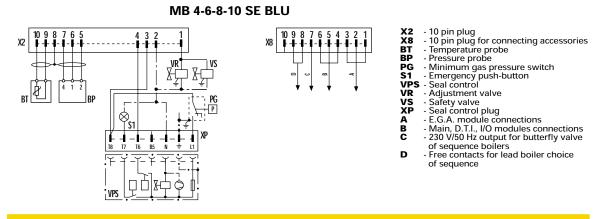
MB 4-6-8-10 SE BLU

- 1 Closing thermostat
- 2 Fan motor working
- 3 Air damper
- 4 Ignition transformer
- 5 Valves open
- 6 Flame presence

ELECTRICAL CONNECTIONS *To be made by the installer*

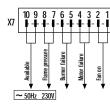

圁

Electrical connections must be made by qualified and skilled personnel, according to the local norms.



Example of the terminal board for electrical connections

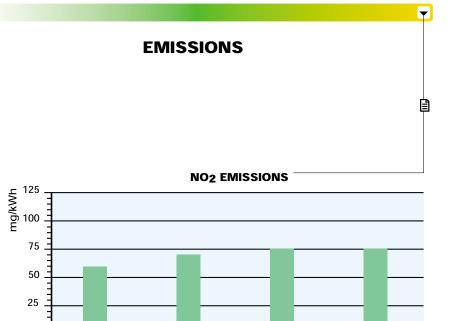
THREE PHASE SUPPLY TO THE POWER CIRCUIT AND CONNECTING THE AUXILIARY
 CONTROLS

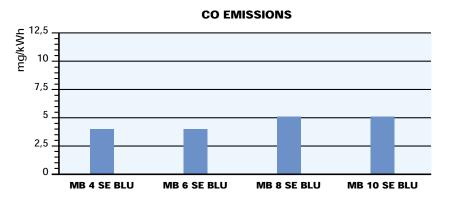


CONNECTION OF THE PROBES FOR THE CONTROLLED PARAMETER AND DATA CONNECTION FOR THE VARIOUS MODULES (Accessories)

SIGNALS FOR WORKING STATUS OF THE MAIN COMPONENTS

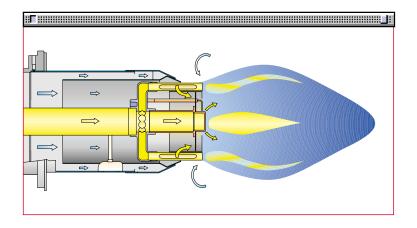
MB 4-6-8-10 SE BLU


- X7 10 pin output plug, free contacts
 SL Layout plug diagram
 X3,4,5,6 Plugs for electrical factory-set
- X3,4,5,6 Plugs for electrical factory-set connections


The following table shows the supply lead sections and the type of fuse to be used.

Mo	del	▼MB 4	SE BLU	▼ MB 6	SE BLU	▼ MB 8	SE BLU	▼ MB 10	SE BLU
		230V	400V	230V	400V	230V	400V	230V	400V
F	А	63 gG	50 gG	63 gG	50 gG	80 gG	63 gG	80 gG	63 gG
L	mm ²	6	4	6	4	10	10	10	10

MB 8 SE BLU


MB 10 SE BLU

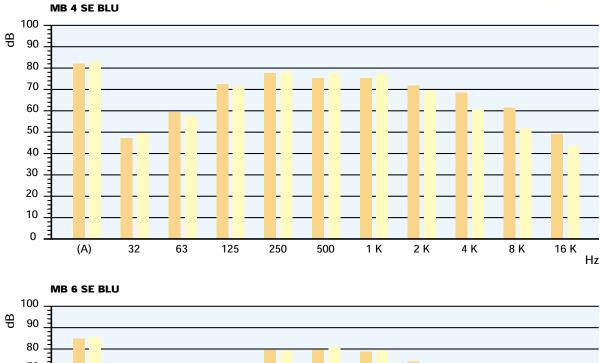
MB 6 SE BLU

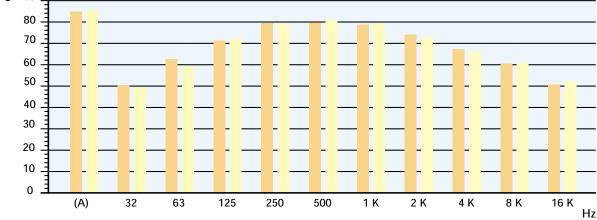
The emissions have been obtained, for the various models, on the basis of EN 676 standard.

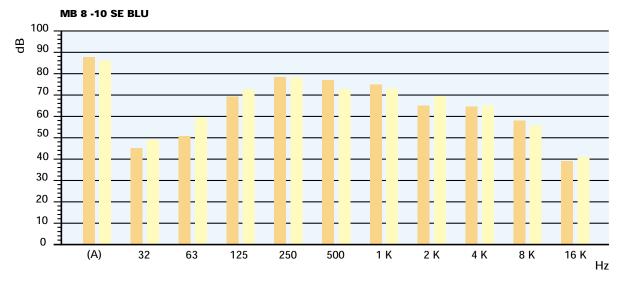
The MB SE BLU series reduce polluting emissions with its exclusive design which optimises air/fuel mixture. The gas in the combustion heads is distributed through openings which are perpendicular to the air flow; part of the fuel is injected directly into the centre of the flame.

This results in low flame temperature combustion to prevent the formation of NO. Gradual and progressive combustion throughout the flame prevents areas of high oxidation inside the flame.

Emissions are further reduced by the re-circulation of combustion gases due to the high velocity of air leaving the combustion head.


Pollution levels are below even the most severe requirement standards.


0

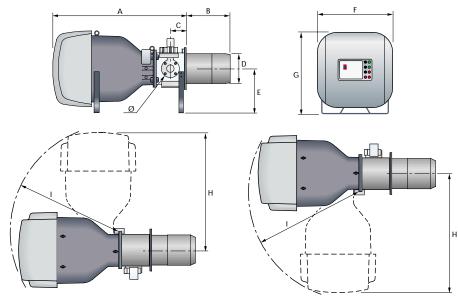

MB 4 SE BLU

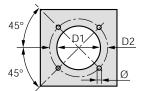
SOUND EMISSIONS

(A) Value obtained in dB(A)

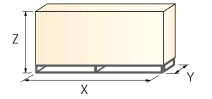
▼

Maximum modulation


Minimal modulation


BURNERS

MB 4-6-8-10 SE BLU


Model	А	В	С	D	E	F	G	Н	I	Ø
► MB 4 SE BLU	1470	511	183	336	490	840	910	1330	1205	DN80
► MB 6 SE BLU	1470	511	183	336	490	840	910	1330	1205	DN80
MB 8 SE BLU	1900	530	208	413	575	1007	1079	1740	1570	DN80
MB 10 SE BLU	1900	530	208	413	575	1007	1079	1740	1570	DN80

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
► MB 4 SE BLU	350	496	M20
► MB 6 SE BLU	350	496	M20
MB 8 SE BLU	418	608	M20
MB 10 SE BLU	418	608	M20

PACKAGING

Model	Х	Y	Z	kg
▶ MB 4 SE BLU	2120	1005	1175	300
► MB 6 SE BLU	2120	1005	1175	300
MB 8 SE BLU	2590	1170	1350	450
MB 10 SE BLU	2590	1170	1350	450

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

All operations must be performed in accordance with the technical handbook supplied with the burner.

Access to the internal components is very simple, as the back of the burner is hinged which means it can be completely opened.

The burners can be supplied with the opening on the right or left, depending on personal requirements.

FIXING THE BURNER TO THE BOILER AND INITIAL SETTINGS

B

- All the burners have lifting rings, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as template, prepare a suitable lifting system and, after hooking onto the rings, fix burner to the boiler.
- Install the gas train, choosing it on the basis of the maximum boiler output and on the basis of the diagrams enclosed with the burner instructions.
- Adjust the combustion head run, using the mechanism lever.

ELECTRICAL CONNECTIONS AND START UP

- Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- Turning the motor check the led signalling correct rotation direction, at left of the plugs group, is on.
- Perform a first ignition calibration on the gas train.
- On start up, check:
 - gas pressure at the combustion head (to max. and min. output)
 - combustion quality, in terms of unburned substances and excess air.

DTI Module (Data Transfer Interface)

This electronic module can transfer multiple signals from different local modules to a BMS supervisor software system (Building Management System).

DTI module	9
Burner	Module code
MB 4 - 6 - 8 - 10 SE BLU	3010234

I/O digital module

Digital modules I/O transfer in-coming and out-going information such as working stages and alarms, from the boiler room or from the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O digital module					
Burner	Module code				
MB 4 - 6 - 8 - 10 SE BLU	3010233				

I/O analogic module

I/O Analog modules transfer in-coming and out-going information about burner working stages and other devices in the boiler room or in the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O Analog modules manage both input and output signals, such as 4-20 mA or 0-10 Volt.

I/O analogic module						
Burner	Module code					
MB 4 - 6 - 8 - 10 SE BLU	3010232					

EGA module (Exhaust Gas analyser)

EGA modules measure some of the exhaust gas substances. These modules come with an exhaust gas sampler probe and exhaust gas temperature probe (0-400 °C). Four different EGA modules are available depending on the type of substance to be checked, as given

in the following table:

▼

EGA module						
Burner	Analysed gas	Module code				
MB 4 - 6 - 8 - 10 SE BLU	CO, CO ₂ , O ₂	3010235				
MB 4 - 6 - 8 - 10 SE BLU	CO, CO ₂ , O ₂ , NO	3010236				
MB 4 - 6 - 8 - 10 SE BLU	CO, CO ₂ , O ₂ , SO ₂	3010237				
MB 4 - 6 - 8 - 10 SE BLU	CO, CO ₂ , O ₂ , NO, SO ₂	3010238				

Belden 9501 type leads

All the connections for the above modules must be done using a BELDEN 9501 type lead, which is available as an accessory in coils of 50 m.

Belden 9501 lea	d
Burner	Lead code
MB 4 - 6 - 8 - 10 SE BLU	3010239

Accessories for modulating setting

Main management module allows a modulating setting with use of probes chosen on the basis of the application.

The following table lists the accessories for modulating setting, with the application field.

	Probe		
Burner	Туре	Range (°C) (bar)	Code
MB 4 - 6 - 8 - 10 SE BLU	Temperature	0 ÷ 400°C	3010187
MB 4 - 6 - 8 - 10 SE BLU	Pressure	0 ÷ 3 bar	3010246
MB 4 - 6 - 8 - 10 SE BLU	Pressure	0 ÷ 18 bar	3010186
MB 4 - 6 - 8 - 10 SE BLU	Pressure	0 ÷ 30 bar	3010188
	MB 4 - 6 - 8 - 10 SE BLU MB 4 - 6 - 8 - 10 SE BLU MB 4 - 6 - 8 - 10 SE BLU	Burner Type MB 4 - 6 - 8 - 10 SE BLU Temperature MB 4 - 6 - 8 - 10 SE BLU Pressure MB 4 - 6 - 8 - 10 SE BLU Pressure	Burner Type Range (°C) (bar) MB 4 - 6 - 8 - 10 SE BLU Temperature 0 ÷ 400°C MB 4 - 6 - 8 - 10 SE BLU Pressure 0 ÷ 3 bar MB 4 - 6 - 8 - 10 SE BLU Pressure 0 ÷ 18 bar

Burner support

For easier maintenance, a mobile burner support has been designed, which means the burner can be dismantled without the need for forklift trucks.

Support	
Burner	Support code
MB 4 - 6 SE BLU	in progress
MB 8 - 10 SE BLU	in progress

▼

GAS TRAIN ACCESSORIES

Adapters

Ē

In certain cases, an adapter must be fitted between the gas train and the burner, when the diameter of the gas train is different from the set diameter of the burner.

Below are given the adapters than can be fitted on the various burners:

		Adapters									
	Burner	Gas	Adapter		Dim	nensio	ns		Adapter code		
		train	type	Øi DN	Øo DN	A mm	B mm	C mm	code		
N	1B 4-6-8-10 SE BLU	CBF 65/1 CT	I	65	80	320			3010221		
	MB 4-6-8-10 SE BLU	CBF 80/1 CT	I	80	80	320			3010222		
	MB 4-6-8-10 SE BLU	CBF 100/1 CT	۰ I	100	80	320			3010223		
	MB 4-6-8-10 SE BLU	CBF 125/1 CT	·	125	80	320			3010224		
	MB 4-6-8-10 SE BLU	CBF 65/1 CT	Ζ	65	80	400	480	225	3010225		
	MB 4-6-8-10 SE BLU	CBF 80/1 CT	Ζ	80	80	400	480	225	3010226		
	MB 4-6-8-10 SE BLU	CBF 100/1 CT	Z	100	80	400	480	225	3010227		
	MB 4-6-8-10 SE BLU	CBF 125/1 CT	Z	125	80	500	480	300	3010228		

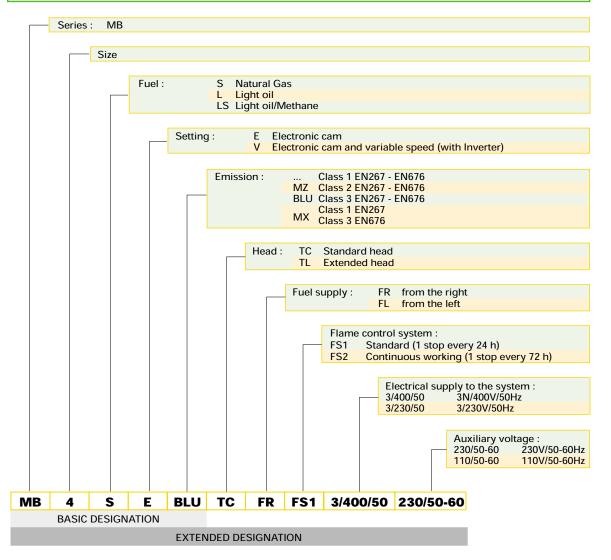
Stabiliser spring

To vary the pressure range of the gas train stabilisers, accessory springs are available. The following table shows these accessories with their application range:

0
S
3
S
Z
S
0

Stabiliser spring				
Gas train	Spring	Code		
CBF 65/1 CT - 80/1 CT	Red from 25 to 55 mbar	3010133		
CBF 100/1 CT	Red from 25 to 55 mbar	3010134		
CBF 125/1 CT	Red from 25 to 55 mbar	in progress		
CBF 65/1 CT - 80/1 CT	Black from 60 to 110 mbar	3010135		
CBF 100/1 CT	Black from 60 to 110 mbar	3010136		
CBF 125/1 CT	Black from 60 to 110 mbar	in progress		
CBF 65/1 CT - 80/1 CT	Pink from 90 to 150 mbar	3090456		
CBF 100/1 CT	Pink from 90 to 150 mbar	3090489		
CBF 125/1 CT	Pink from 90 to 150 mbar	in progress		

Please refer to the technical manual for the correct choice of spring.



SPECIFICATION

Ê

A specific index guides your choice of burner from the various models available in the MODUBLOC MB series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES MODUBLOC MB BURNERS

LIST OF AVAILABLE MODELS

MB4SE BLU MB4SE BLU MB4SE BLU MB4SE BLU	TC FR FS1 3/400/50 230/50-60 TC FR FS1 3/230/50 230/50-60 TC FL FS1 3/400/50 230/50-60 TC FL FS1 3/230/50 230/50-60	MB8SE BLU 1 MB8SE BLU 1	TC FR FS1 3/400/50 230/50-60 TC FR FS1 3/230/50 230/50-60 TC FL FS1 3/400/50 230/50-60 TC FL FS1 3/230/50 230/50-60
MB6SE BLU MB6SE BLU MB6SE BLU MB6SF BLU	TC FR FS1 3/230/50 230/50-60 TC FL FS1 3/400/50 230/50-60	MB10SE BLU T MB10SE BLU T	TC FR FS1 3/400/50 230/50-60 TC FR FS1 3/230/50 230/50-60 TC FL FS1 3/400/50 230/50-60 TC FL FS1 3/230/50 230/50-60

Other versions are available on request.

PRODUCT SPECIFICATION

Burner

Monoblock forced draught gas burner with modulating setting, fully automatic, made up of: - Fan with reverse curve blades high performance with low sound emissions

- Air suction circuit lined with sound-proofing material
- Air damper for air setting controlled by a high precision servomotor
- Air pressure switch
- Fan starting motor at 2900 rpm, three-phase 230/400 400/690 V with neutral, 50Hz
- Low emission mobile combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - flame stability disk
- Automatic regulator for gas delivery, controlled by a high precision servomotor
- Maximum gas pressure switch, with pressure test point, for halting the burner in the case of over pressure on the fuel supply line
- Module for air/fuel setting and output modulation with incorporated PID control of temperature or pressure of the heat generator
- Flame control panel for controlling the system safety
- Photocell for flame detection
- Star/triangle starter for the fan motor
- Burner on/off switch
- Auxiliary voltage led signal
- Manual or automatic output increase/decrease switch
- Burner working led signal
- Contacts motor and thermal relay with release button
- Motor failure led signal
- Burner failure led signal and lighted release button
- Led signal for correct rotation direction of fan motor
- Emergency button
- Coded connection plugs-sockets
- Burner opening hinge
- Lifting rings
- IP 40 electric protection level.

According to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 90/396/EEC directive (gas)
- EN 676 (gas burners).

Standard equipment:

- 1 flange gasket
- 8 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- DTI module (Data Transfer Interface)
- I/O digital module
- I/O analogic module
- EGA module (Exhaust Gas Analyser) in the following versions:
 - EGA CO, CO₂, O₂
 - EGA CO, CO₂, O₂, NO
 - EGA CO, CO₂, O₂, SO₂
 - EGA CO, CO₂, O₂, NO, SO₂
- BELDEN 9501 type lead
- Pressure probe 0 3 bar
- Pressure probe 0 18 bar
- Pressure probe 0 30 bar
- Temperature probe 0 400°C
- Burner support
- Adapters
- Stabiliser spring.

Lineagrafica

RIELLO S.p.A. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980 Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

